期刊文献+
共找到2,118篇文章
< 1 2 106 >
每页显示 20 50 100
Computational Fluid Dynamics Based Bulbous Bow Optimization Using a Genetic Algorithm 被引量:5
1
作者 Shahid Mahmood Debo Huang 《Journal of Marine Science and Application》 2012年第3期286-294,共9页
Computational fluid dynamics (CFD) plays a major role in predicting the flow behavior of a ship. With the development of fast computers and robust CFD software, CFD has become an important tool for designers and eng... Computational fluid dynamics (CFD) plays a major role in predicting the flow behavior of a ship. With the development of fast computers and robust CFD software, CFD has become an important tool for designers and engineers in the ship industry. In this paper, the hull form of a ship was optimized for total resistance using CFD as a calculation tool and a genetic algorithm as an optimization tool. CFD based optimization consists of major steps involving automatic generation of geometry based on design parameters, automatic generation of mesh, automatic analysis of fluid flow to calculate the required objective/cost function, and finally an optimization tool to evaluate the cost for optimization. In this paper, integration of a genetic algorithm program, written in MATLAB, was carried out with the geometry and meshing software GAMBIT and CFD analysis software FLUENT. Different geometries of additive bulbous bow were incorporated in the original hull based on design parameters. These design variables were optimized to achieve a minimum cost function of "total resistance". Integration of a genetic algorithm with CFD tools proves to be effective for hull form ootimization. 展开更多
关键词 bulbous bow genetic algorithm computational fluid dynamics (CFD) total resistance
下载PDF
A Simulation of the Response of a Sounding Temperature Sensor Based on the Combination of a Genetic Algorithm and Computational Fluid Dynamics
2
作者 Juanjuan Wang Yajuan Jia Jiangping Nan 《Fluid Dynamics & Materials Processing》 EI 2020年第6期97-111,共15页
The present study aims at improving the accuracy of weather forecast by providing useful information on the behavior and response of a sounding temperature sensor.A hybrid approach relying on Computational Fluid Dynam... The present study aims at improving the accuracy of weather forecast by providing useful information on the behavior and response of a sounding temperature sensor.A hybrid approach relying on Computational Fluid Dynamics and a genetic algorithm(GA)is used to simulate the system represented by the bead thermistor and the surrounding air.In particular,the influence of different lead angles,sensor lead length,and lead number is considered.The results have shown that when the length of the lead wire of the bead thermistor is increased,the radiation temperature rise is reduced;when the number of lead wire is four and the angle between the lead wires is 180°,the solar radiation angle has a scarce influence on the radiation temperature rise of the sounding temperature sensor. 展开更多
关键词 Sounding temperature sensor genetic algorithm radiation temperature rise computational fluid dynamics bead thermistor
下载PDF
Investigation into the Computational Costs of Using Genetic Algorithm and Simulated Annealing for the Optimization of Explicit Friction Factor Models
3
作者 Sunday Boladale Alabi Abasiyake Uku Ekpenyong 《Journal of Materials Science and Chemical Engineering》 CAS 2022年第12期1-9,共9页
Research reports show that the accuracies of many explicit friction factor models, having different levels of accuracies and complexities, have been improved using genetic algorithm (GA), a global optimization approac... Research reports show that the accuracies of many explicit friction factor models, having different levels of accuracies and complexities, have been improved using genetic algorithm (GA), a global optimization approach. However, the computational cost associated with the use of GA has yet to be discussed. In this study, the parameters of sixteen explicit models for the estimation of friction factor in the turbulent flow regime were optimized using two popular global search methods namely genetic algorithm (GA) and simulated annealing (SA). Based on 1000 interval values of Reynolds number (Re) in the range of and 100 interval values of relative roughness () in the range of , corresponding friction factor (f) data were obtained by solving Colebrook-White equation using Microsoft Excel spreadsheet. These data were then used to modify the parameters of the selected explicit models. Although both GA and SA led to either moderate or significant improvements in the accuracies of the existing friction factor models, SA outperforms the GA. Moreover, the SA requires far less computational time than the GA to complete the corresponding optimization process. It can therefore be concluded that SA is a better global optimizer than GA in the process of finding an improved explicit friction factor model as an alternative to the implicit Colebrook-White equation in the turbulent flow regime. 展开更多
关键词 genetic algorithm Simulated Annealing Global Optimization Explicit Friction Factor computational Cost
下载PDF
Natural Genetic Algorithm with Controlled Population Evolution
4
作者 Li Gang Tong Fu (School of Computer Engineering and Science, Shanghai University) 《Advances in Manufacturing》 SCIE CAS 1999年第2期60-63,共4页
There are three difficult problems in the application of genetic algorithms, namely, the parameter control, the premature convergence and the deception problem.Based on genetic algorithm with varying population size, ... There are three difficult problems in the application of genetic algorithms, namely, the parameter control, the premature convergence and the deception problem.Based on genetic algorithm with varying population size, a self adaptive genetic algorithm called natural genetic algorithm (NGA) is proposed. This algorithm introduces the population size threshold and the immigrant concepts, and adopts dynamically changing parameters. The design and structure of NGA are discussed in this paper.The performance of NGA is also analyzed. 展开更多
关键词 genetic algorithm natural genetic algorithm evolutionary computation
下载PDF
Elitism-based immune genetic algorithm and its application to optimization of complex multi-modal functions 被引量:4
5
作者 谭冠政 周代明 +1 位作者 江斌 DIOUBATE Mamady I 《Journal of Central South University of Technology》 EI 2008年第6期845-852,共8页
A novel immune genetic algorithm with the elitist selection and elitist crossover was proposed, which is called the immune genetic algorithm with the elitism (IGAE). In IGAE, the new methods for computing antibody s... A novel immune genetic algorithm with the elitist selection and elitist crossover was proposed, which is called the immune genetic algorithm with the elitism (IGAE). In IGAE, the new methods for computing antibody similarity, expected reproduction probability, and clonal selection probability were given. IGAE has three features. The first is that the similarities of two antibodies in structure and quality are all defined in the form of percentage, which helps to describe the similarity of two antibodies more accurately and to reduce the computational burden effectively. The second is that with the elitist selection and elitist crossover strategy IGAE is able to find the globally optimal solution of a given problem. The third is that the formula of expected reproduction probability of antibody can be adjusted through a parameter r, which helps to balance the population diversity and the convergence speed of IGAE so that IGAE can find the globally optimal solution of a given problem more rapidly. Two different complex multi-modal functions were selected to test the validity of IGAE. The experimental results show that IGAE can find the globally maximum/minimum values of the two functions rapidly. The experimental results also confirm that IGAE is of better performance in convergence speed, solution variation behavior, and computational efficiency compared with the canonical genetic algorithm with the elitism and the immune genetic algorithm with the information entropy and elitism. 展开更多
关键词 immune genetic algorithm multi-modal function optimization evolutionary computation elitist selection elitist crossover
下载PDF
Genetic Algorithm for Chinese Postman Problems 被引量:1
6
作者 Jiang Hua, Kang Li-shanState Key Laboratory of Software Engineering, Wuhan University,Wuhan 430072,Hubei, China 《Wuhan University Journal of Natural Sciences》 CAS 2003年第S1期316-318,共3页
Chinese Postman Problem is an unsettled graphic problem. It was approached seldom by evolutionary computation. Now we use genetic algorithm to solve Chinese Postman Problem in undirected graph and get good results. It... Chinese Postman Problem is an unsettled graphic problem. It was approached seldom by evolutionary computation. Now we use genetic algorithm to solve Chinese Postman Problem in undirected graph and get good results. It could be extended to solve Chinese postman problem in directed graph. We make these efforts for exploring in optimizing the mixed Chinese postman problem. 展开更多
关键词 Chinese postman problem Eularian graph genetic algorithm evolutionary computation
下载PDF
Parallel Optimization of Program Instructions Using Genetic Algorithms
7
作者 Petre Anghelescu 《Computers, Materials & Continua》 SCIE EI 2021年第6期3293-3310,共18页
This paper describes an efficient solution to parallelize softwareprogram instructions, regardless of the programming language in which theyare written. We solve the problem of the optimal distribution of a set ofinst... This paper describes an efficient solution to parallelize softwareprogram instructions, regardless of the programming language in which theyare written. We solve the problem of the optimal distribution of a set ofinstructions on available processors. We propose a genetic algorithm to parallelize computations, using evolution to search the solution space. The stagesof our proposed genetic algorithm are: The choice of the initial populationand its representation in chromosomes, the crossover, and the mutation operations customized to the problem being dealt with. In this paper, geneticalgorithms are applied to the entire search space of the parallelization ofthe program instructions problem. This problem is NP-complete, so thereare no polynomial algorithms that can scan the solution space and solve theproblem. The genetic algorithm-based method is general and it is simple andefficient to implement because it can be scaled to a larger or smaller number ofinstructions that must be parallelized. The parallelization technique proposedin this paper was developed in the C# programming language, and our resultsconfirm the effectiveness of our parallelization method. Experimental resultsobtained and presented for different working scenarios confirm the theoreticalresults, and they provide insight on how to improve the exploration of a searchspace that is too large to be searched exhaustively. 展开更多
关键词 Parallel instruction execution parallel algorithms genetic algorithms parallel genetic algorithms artificial intelligence techniques evolutionary strategies
下载PDF
Orbit Design for Responsive Space Using Multiple-objective Evolutionary Computation
8
作者 FU Xiaofeng WU Meiping ZHANG Jing 《空间科学学报》 CAS CSCD 北大核心 2012年第2期238-244,共7页
Responsive orbits have exhibited advantages in emergencies for their excellent responsiveness and coverage to targets.Generally,there are several conflicting metrics to trade in the orbit design for responsive space.A... Responsive orbits have exhibited advantages in emergencies for their excellent responsiveness and coverage to targets.Generally,there are several conflicting metrics to trade in the orbit design for responsive space.A special multiple-objective genetic algorithm,namely the Nondominated Sorting Genetic AlgorithmⅡ(NSGAⅡ),is used to design responsive orbits.This algorithm has considered the conflicting metrics of orbits to achieve the optimal solution,including the orbital elements and launch programs of responsive vehicles.Low-Earth fast access orbits and low-Earth repeat coverage orbits,two subtypes of responsive orbits,can be designed using NSGAI under given metric tradeoffs,number of vehicles,and launch mode.By selecting the optimal solution from the obtained Pareto fronts,a designer can process the metric tradeoffs conveniently in orbit design.Recurring to the flexibility of the algorithm,the NSGAI promotes the responsive orbit design further. 展开更多
关键词 Multiple-objective evolutionary computation Non-dominated Sorting genetic algorithmⅡ(NSGAⅡ) Low-Earth Fast Access Orbit(FAO) Low-Earth Repeat Coverage Orbit(RCO) Successive-coverage constellation for responsive deployment
下载PDF
Hydraulic Optimization of a Double-channel Pump's Impeller Based on Multi-objective Genetic Algorithm 被引量:12
9
作者 ZHAO Binjuan WANG Yu +2 位作者 CHEN Huilong QIU Jing HOU Duohua 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2015年第3期634-640,共7页
Computational fluid dynamics(CFD) can give a lot of potentially very useful information for hydraulic optimization design of pumps, however, it cannot directly state what kind of modification should be made to impro... Computational fluid dynamics(CFD) can give a lot of potentially very useful information for hydraulic optimization design of pumps, however, it cannot directly state what kind of modification should be made to improve such hydrodynamic performance. In this paper, a more convenient and effective approach is proposed by combined using of CFD, multi-objective genetic algorithm(MOGA) and artificial neural networks(ANN) for a double-channel pump's impeller, with maximum head and efficiency set as optimization objectives, four key geometrical parameters including inlet diameter, outlet diameter, exit width and midline wrap angle chosen as optimization parameters. Firstly, a multi-fidelity fitness assignment system in which fitness of impellers serving as training and comparison samples for ANN is evaluated by CFD, meanwhile fitness of impellers generated by MOGA is evaluated by ANN, is established and dramatically reduces the computational expense. Then, a modified MOGA optimization process, in which selection is performed independently in two sub-populations according to two optimization objectives, crossover and mutation is performed afterword in the merged population, is developed to ensure the global optimal solution to be found. Finally, Pareto optimal frontier is found after 500 steps of iterations, and two optimal design schemes are chosen according to the design requirements. The preliminary and optimal design schemes are compared, and the comparing results show that hydraulic performances of both pumps 1 and 2 are improved, with the head and efficiency of pump 1 increased by 5.7% and 5.2%, respectively in the design working conditions, meanwhile shaft power decreased in all working conditions, the head and efficiency of pump 2 increased by 11.7% and 5.9%, respectively while shaft power increased by 5.5%. Inner flow field analyses also show that the backflow phenomenon significantly diminishes at the entrance of the optimal impellers 1 and 2, both the area of vortex and intensity of vortex decreases in the whole flow channel. This paper provides a promising tool to solve the hydraulic optimization problem of pumps' impellers. 展开更多
关键词 double-channel pump's impeller multi-objective genetic algorithm artificial neural network computational fluid dynamics(CFD) UNI
下载PDF
Forward and backward models for fault diagnosis based on parallel genetic algorithms 被引量:10
10
作者 Yi LIU Ying LI +1 位作者 Yi-jia CAO Chuang-xin GUO 《Journal of Zhejiang University-Science A(Applied Physics & Engineering)》 SCIE EI CAS CSCD 2008年第10期1420-1425,共6页
In this paper, a mathematical model consisting of forward and backward models is built on parallel genetic algorithms (PGAs) for fault diagnosis in a transmission power system. A new method to reduce the scale of faul... In this paper, a mathematical model consisting of forward and backward models is built on parallel genetic algorithms (PGAs) for fault diagnosis in a transmission power system. A new method to reduce the scale of fault sections is developed in the forward model and the message passing interface (MPI) approach is chosen to parallel the genetic algorithms by global sin-gle-population master-slave method (GPGAs). The proposed approach is applied to a sample system consisting of 28 sections, 84 protective relays and 40 circuit breakers. Simulation results show that the new model based on GPGAs can achieve very fast computation in online applications of large-scale power systems. 展开更多
关键词 Forward and backward models Fault diagnosis Global single-population master-slave genetic algorithms (GPGAs) Parallel computation
下载PDF
An optimizing algorithm of static task scheduling problem based on hybrid genetic algorithm 被引量:3
11
作者 柳玉 Song Jian Wen Jiayan 《High Technology Letters》 EI CAS 2016年第2期170-176,共7页
To reduce resources consumption of parallel computation system, a static task scheduling opti- mization method based on hybrid genetic algorithm is proposed and validated, which can shorten the scheduling length of pa... To reduce resources consumption of parallel computation system, a static task scheduling opti- mization method based on hybrid genetic algorithm is proposed and validated, which can shorten the scheduling length of parallel tasks with precedence constraints. Firstly, the global optimal model and constraints are created to demonstrate the static task scheduling problem in heterogeneous distributed computing systems(HeDCSs). Secondly, the genetic population is coded with matrix and used to search the total available time span of the processors, and then the simulated annealing algorithm is introduced to improve the convergence speed and overcome the problem of easily falling into local minimum point, which exists in the traditional genetic algorithm. Finally, compared to other existed scheduling algorithms such as dynamic level scheduling ( DLS), heterogeneous earliest finish time (HEFr), and longest dynamic critical path( LDCP), the proposed approach does not merely de- crease tasks schedule length, but also achieves the maximal resource utilization of parallel computa- tion system by extensive experiments. 展开更多
关键词 genetic algorithm simulated annealing algorithm parallel computation directedacyelic graph
下载PDF
An Effective Non-Commutative Encryption Approach with Optimized Genetic Algorithm for Ensuring Data Protection in Cloud Computing 被引量:2
12
作者 S.Jerald Nirmal Kumar S.Ravimaran M.M.Gowthul Alam 《Computer Modeling in Engineering & Sciences》 SCIE EI 2020年第11期671-697,共27页
Nowadays,succeeding safe communication and protection-sensitive data from unauthorized access above public networks are the main worries in cloud servers.Hence,to secure both data and keys ensuring secured data storag... Nowadays,succeeding safe communication and protection-sensitive data from unauthorized access above public networks are the main worries in cloud servers.Hence,to secure both data and keys ensuring secured data storage and access,our proposed work designs a Novel Quantum Key Distribution(QKD)relying upon a non-commutative encryption framework.It makes use of a Novel Quantum Key Distribution approach,which guarantees high level secured data transmission.Along with this,a shared secret is generated using Diffie Hellman(DH)to certify secured key generation at reduced time complexity.Moreover,a non-commutative approach is used,which effectively allows the users to store and access the encrypted data into the cloud server.Also,to prevent data loss or corruption caused by the insiders in the cloud,Optimized Genetic Algorithm(OGA)is utilized,which effectively recovers the data and retrieve it if the missed data without loss.It is then followed with the decryption process as if requested by the user.Thus our proposed framework ensures authentication and paves way for secure data access,with enhanced performance and reduced complexities experienced with the prior works. 展开更多
关键词 Cloud computing quantum key distribution Diffie Hellman non-commutative approach genetic algorithm particle swarm optimization
下载PDF
Task Scheduling Optimization in Cloud Computing Based on Genetic Algorithms 被引量:1
13
作者 Ahmed Y.Hamed Monagi H.Alkinani 《Computers, Materials & Continua》 SCIE EI 2021年第12期3289-3301,共13页
Task scheduling is the main problem in cloud computing that reduces system performance;it is an important way to arrange user needs and perform multiple goals.Cloud computing is the most popular technology nowadays an... Task scheduling is the main problem in cloud computing that reduces system performance;it is an important way to arrange user needs and perform multiple goals.Cloud computing is the most popular technology nowadays and has many research potential in various areas like resource allocation,task scheduling,security,privacy,etc.To improve system performance,an efficient task-scheduling algorithm is required.Existing task-scheduling algorithms focus on task-resource requirements,CPU memory,execution time,and execution cost.In this paper,a task scheduling algorithm based on a Genetic Algorithm(GA)has been presented for assigning and executing different tasks.The proposed algorithm aims to minimize both the completion time and execution cost of tasks and maximize resource utilization.We evaluate our algorithm’s performance by applying it to two examples with a different number of tasks and processors.The first example contains ten tasks and four processors;the computation costs are generated randomly.The last example has eight processors,and the number of tasks ranges from twenty to seventy;the computation cost of each task on different processors is generated randomly.The achieved results show that the proposed approach significantly succeeded in finding the optimal solutions for the three objectives;completion time,execution cost,and resource utilization. 展开更多
关键词 Cloud computing task scheduling genetic algorithm optimization algorithm
下载PDF
An Adaptive Genetic Algorithm-Based Load Balancing-Aware Task Scheduling Technique for Cloud Computing 被引量:1
14
作者 Mohit Agarwal Shikha Gupta 《Computers, Materials & Continua》 SCIE EI 2022年第12期6103-6119,共17页
Task scheduling in highly elastic and dynamic processing environments such as cloud computing have become the most discussed problem among researchers.Task scheduling algorithms are responsible for the allocation of t... Task scheduling in highly elastic and dynamic processing environments such as cloud computing have become the most discussed problem among researchers.Task scheduling algorithms are responsible for the allocation of the tasks among the computing resources for their execution,and an inefficient task scheduling algorithm results in under-or over-utilization of the resources,which in turn leads to degradation of the services.Therefore,in the proposed work,load balancing is considered as an important criterion for task scheduling in a cloud computing environment as it can help in reducing the overhead in the critical decision-oriented process.In this paper,we propose an adaptive genetic algorithm-based load balancing(GALB)-aware task scheduling technique that not only results in better utilization of resources but also helps in optimizing the values of key performance indicators such as makespan,performance improvement ratio,and degree of imbalance.The concept of adaptive crossover and mutation is used in this work which results in better adaptation for the fittest individual of the current generation and prevents them from the elimination.CloudSim simulator has been used to carry out the simulations and obtained results establish that the proposed GALB algorithm performs better for all the key indicators and outperforms its peers which are taken into the consideration. 展开更多
关键词 Cloud computing genetic algorithm(GA) load balancing MAKESPAN resource utilization task scheduling
下载PDF
A neurofuzzy system based on rough set theory and genetic algorithm 被引量:1
15
作者 罗健旭 邵惠鹤 《Journal of Harbin Institute of Technology(New Series)》 EI CAS 2005年第3期278-282,共5页
This paper presents a hybrid soft computing modeling approach for a neurofuzzy system based on rough set theory and the genetic algorithms (NFRSGA). The fundamental problem of a neurofuzzy system is that when the inpu... This paper presents a hybrid soft computing modeling approach for a neurofuzzy system based on rough set theory and the genetic algorithms (NFRSGA). The fundamental problem of a neurofuzzy system is that when the input dimension increases, the fuzzy rule base increases exponentially. This leads to a huge infrastructure network which results in slow convergence. To solve this problem, rough set theory is used to obtain the reductive rules, which are used as fuzzy rules of the fuzzy system. The number of rules decrease, and each rule does not need all the conditional attribute values. This results in a reduced, or not fully connected, neural network. The structure of the neural network is relatively small and thus the weights to be trained decrease. The genetic algorithm is used to search the optimal discretization of the continuous attributes. The NFRSGA approach has been applied in the practical application of building a soft sensor model for estimating the freezing point of the light diesel fuel in a Fluid Catalytic Cracking Unit (FCCU), and satisfying results are obtained. 展开更多
关键词 soft computing neurofuzzy system rough set genetic algorithm
下载PDF
Privacy-Preserving Genetic Algorithm Outsourcing in Cloud Computing 被引量:4
16
作者 Leqi Jiang Zhangjie Fu 《Journal of Cyber Security》 2020年第1期49-61,共13页
Genetic Algorithm(GA)has been widely used to solve various optimization problems.As the solving process of GA requires large storage and computing resources,it is well motivated to outsource the solving process of GA ... Genetic Algorithm(GA)has been widely used to solve various optimization problems.As the solving process of GA requires large storage and computing resources,it is well motivated to outsource the solving process of GA to the cloud server.However,the algorithm user would never want his data to be disclosed to cloud server.Thus,it is necessary for the user to encrypt the data before transmitting them to the server.But the user will encounter a new problem.The arithmetic operations we are familiar with cannot work directly in the ciphertext domain.In this paper,a privacy-preserving outsourced genetic algorithm is proposed.The user’s data are protected by homomorphic encryption algorithm which can support the operations in the encrypted domain.GA is elaborately adapted to search the optimal result over the encrypted data.The security analysis and experiment results demonstrate the effectiveness of the proposed scheme. 展开更多
关键词 Homomorphic encryption genetic algorithm OUTSOURCING cloud computing
下载PDF
Research on Resource Scheduling of Cloud Computing Based on Improved Genetic Algorithm 被引量:1
17
作者 Juanzhi Zhang Fuli Xiong Zhongxing Duan 《Journal of Electronic Research and Application》 2020年第2期4-9,共6页
In order to solve the problem that the resource scheduling time of cloud data center is too long,this paper analyzes the two-stage resource scheduling mechanism of cloud data center.Aiming at the minimum task completi... In order to solve the problem that the resource scheduling time of cloud data center is too long,this paper analyzes the two-stage resource scheduling mechanism of cloud data center.Aiming at the minimum task completion time,a mathematical model of resource scheduling in cloud data center is established.The two-stage resource scheduling optimization simulation is realized by using the conventional genetic algorithm.On the technology of the conventional genetic algorithm,an adaptive transformation operator is designed to improve the crossover and mutation of the genetic algorithm.The experimental results show that the improved genetic algorithm can significantly reduce the total completion time of the task,and has good convergence and global optimization ability. 展开更多
关键词 Cloud computing resource scheduling genetic algorithms Adaptive improvement operator
下载PDF
Automatic Identification of Tomato Maturation Using Multilayer Feed Forward Neural Network with Genetic Algorithms (GA) 被引量:1
18
作者 FANG Jun-long ZHANG Chang-li WANG Shu-wen 《Journal of Northeast Agricultural University(English Edition)》 CAS 2004年第2期179-183,共5页
We set up computer vision system for tomato images. By using this system, the RGB value of tomato image was converted into HIS value whose H was used to acquire the color character of the surface of tomato. To use mul... We set up computer vision system for tomato images. By using this system, the RGB value of tomato image was converted into HIS value whose H was used to acquire the color character of the surface of tomato. To use multilayer feed forward neural network with GA can finish automatic identification of tomato maturation. The results of experiment showed that the accuracy was up to 94%. 展开更多
关键词 tomato maturation computer vision artificial neural network genetic algorithms
下载PDF
An improved self-calibration approach based on adaptive genetic algorithm for position-based visual servo 被引量:1
19
作者 Ding LIU Xiongjun WU Yanxi YANG 《控制理论与应用(英文版)》 EI 2008年第3期246-252,共7页
An improved self-calibrating algorithm for visual servo based on adaptive genetic algorithm is proposed in this paper. Our approach introduces an extension of Mendonca-Cipolla and G. Chesi's self-calibration for the ... An improved self-calibrating algorithm for visual servo based on adaptive genetic algorithm is proposed in this paper. Our approach introduces an extension of Mendonca-Cipolla and G. Chesi's self-calibration for the positionbased visual servo technique which exploits the singular value property of the essential matrix. Specifically, a suitable dynamic online cost function is generated according to the property of the three singular values. The visual servo process is carried out simultaneous to the dynamic self-calibration, and then the cost function is minimized using the adaptive genetic algorithm instead of the gradient descent method in G. Chesi's approach. Moreover, this method overcomes the limitation that the initial parameters must be selected close to the true value, which is not constant in many cases. It is not necessary to know exactly the camera intrinsic parameters when using our approach, instead, coarse coding bounds of the five parameters are enough for the algorithm, which can be done once and for all off-line. Besides, this algorithm does not require knowledge of the 3D model of the object. Simulation experiments are carried out and the results demonstrate that the proposed approach provides a fast convergence speed and robustness against unpredictable perturbations of camera parameters, and it is an effective and efficient visual servo algorithm. 展开更多
关键词 Dynamic self-calibration Visual servo Adaptive genetic algorithm Parameter optimizing Essential matrix Computer vision
下载PDF
Evolutionary computation in China: A literature survey 被引量:1
20
作者 Maoguo Gong Shanfeng Wang +2 位作者 Wenfeng Liu Jianan Yan Licheng Jiao 《CAAI Transactions on Intelligence Technology》 2016年第4期334-354,共21页
Evolutionary computation (EC) has received significant attention in China during the last two decades. In this paper, we present an overview of the current state of this rapidly growing field in China. Chinese resea... Evolutionary computation (EC) has received significant attention in China during the last two decades. In this paper, we present an overview of the current state of this rapidly growing field in China. Chinese research in theoretical foundations of EC, EC-based optimization, EC-based data mining, and EC-based real-world applications are summarized. 展开更多
关键词 evolutionary computation evolutionary algorithms OPTIMIZATION Data mining
下载PDF
上一页 1 2 106 下一页 到第
使用帮助 返回顶部