期刊文献+
共找到5篇文章
< 1 >
每页显示 20 50 100
Extinction of Weak Solutions for Nonlinear Parabolic Equations with Nonstandard Growth Conditions
1
作者 GAO JING-LU Guo BIN 《Communications in Mathematical Research》 CSCD 2012年第4期376-382,共7页
This paper deals with the extinction of weak solutions of the initial and boundary value problem for ut = div((|u|σ + d0)| u|^p(x)-2 u). When the exponent belongs to different intervals, the solution has ... This paper deals with the extinction of weak solutions of the initial and boundary value problem for ut = div((|u|σ + d0)| u|^p(x)-2 u). When the exponent belongs to different intervals, the solution has different singularity (vanishing in finite time). 展开更多
关键词 nonlinear parabolic equation nonstandard growth condition px-laplacian operator
下载PDF
一类发展的p(x)-Laplace方程解的存在唯一性
2
作者 曾羽群 《集美大学学报(自然科学版)》 CAS 2021年第2期119-124,共6页
讨论一类发展的p(x)-Laplace方程ut=div(a(x,t)up(x)-2u)+f(u,x,t)解的存在唯一性。不同于此前的研究,文中假设a(x,t)≥0,且当x∈Ω时,a(x,t)>0,解的稳定性是建立在一个合理的部分边界条件u(x,t)=0,(x,t)∈Σ1上,其中Σ1■Ω×(0... 讨论一类发展的p(x)-Laplace方程ut=div(a(x,t)up(x)-2u)+f(u,x,t)解的存在唯一性。不同于此前的研究,文中假设a(x,t)≥0,且当x∈Ω时,a(x,t)>0,解的稳定性是建立在一个合理的部分边界条件u(x,t)=0,(x,t)∈Σ1上,其中Σ1■Ω×(0,T)仅仅是一个子流形。 展开更多
关键词 发展的p(x)-Laplace方程 存在唯一性 稳定性 部分边界条件 子流形
下载PDF
Evolutionary p(x)-Laplacian Equation with a Convection Term
3
作者 Hua-shui ZHAN 《Acta Mathematicae Applicatae Sinica》 SCIE CSCD 2019年第3期655-670,共16页
The paper studies an evolutionary p(x)-Laplacian equation with a convection term ut=div(ρα|■u|p(x)-2■u)+∑N i=1■bi(u)/■xi,whereρ(x)=dist(x,■Ω),ess inf p(x)=p^->2.To assure the well-posedness of the solutio... The paper studies an evolutionary p(x)-Laplacian equation with a convection term ut=div(ρα|■u|p(x)-2■u)+∑N i=1■bi(u)/■xi,whereρ(x)=dist(x,■Ω),ess inf p(x)=p^->2.To assure the well-posedness of the solutions,the paper shows only a part of the boundary,Σp■■Ω,on which we can impose the boundary value.Σp is determined by the convection term,in particular,when 1<α<(p^--2)/2,Σp={x∈■Ω:bi′(0)ni(x)<0}.So,there is an essential difference between the equation and the usual evolutionary p-Laplacian equation.At last,the existence and the stability of weak solutions are proved under the additional conditionsα<(p^--2)/2 andΣp=■Ω. 展开更多
关键词 evolutionary p(x)-laplacian equation WEEK solution Fichera-Oleinik theory boundary DEGENERACY
原文传递
A STRONG MAXIMUM PRINCIPLE FOR p(x)-LAPLACIAN EQUATION
4
作者 Xiao Qishan (Dept. of Math. and Computer Science, Fujian Radio TV University, Fuzhou 350003) 《Annals of Differential Equations》 2008年第3期356-360,共5页
This paper considers a p(x)-Laplacian equation. Under some suitable conditions a strong maximum principle for it is obtained. Our results improve some known ones.
关键词 weak up-solution weak down-solution p(x)-laplacian equation strong maximum principle
原文传递
W0^1p(x) Versus C^1 Local Minimizers for a Functional with Critical Growth
5
作者 SAOUDI K 《Journal of Partial Differential Equations》 2014年第2期115-124,共10页
Let Ω IR^N, (N ≥ 2) be a bounded smooth domain, p is Holder continuous on Ω^-, 1 〈 p^- := inf pΩ(x) ≤ p+ = supp(x) Ω〈∞, and f:Ω^-× IR be a C^1 function with f(x,s) ≥ 0, V (x,s) ∈Ω ... Let Ω IR^N, (N ≥ 2) be a bounded smooth domain, p is Holder continuous on Ω^-, 1 〈 p^- := inf pΩ(x) ≤ p+ = supp(x) Ω〈∞, and f:Ω^-× IR be a C^1 function with f(x,s) ≥ 0, V (x,s) ∈Ω × R^+ and sup ∈Ωf(x,s) ≤ C(1+s)^q(x), Vs∈IR^+,Vx∈Ω for some 0〈q(x) ∈C(Ω^-) satisfying 1 〈p(x) 〈q(x) ≤p^* (x) -1, Vx ∈Ω ^- and 1 〈 p^- ≤ p^+ ≤ q- ≤ q+. As usual, p* (x) = Np(x)/N-p(x) if p(x) 〈 N and p^* (x) = ∞- if p(x) if p(x) 〉 N. Consider the functional I: W0^1,p(x) (Ω) →IR defined as I(u) def= ∫Ω1/p(x)|△|^p(x)dx-∫ΩF(x,u^+)dx,Vu∈W0^1,p(x)(Ω),where F (x, u) = ∫0^s f (x,s) ds. Theorem 1.1 proves that if u0 ∈ C^1 (Ω^-) is a local minimum of I in the C1 (Ω^-) ∩C0 (Ω^-)) topology, then it is also a local minimum in W0^1,p(x) (Ω)) topology. This result is useful for proving multiple solutions to the associated Euler-lagrange equation (P) defined below. 展开更多
关键词 p x-laplacian equation variational methods local minimizer.
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部