Effect factors of the absorption of the source,air,entrance window,and dead layer of a detector must be considered in the measurement of monoenergetic alpha particles,along with statistical noise and other factors tha...Effect factors of the absorption of the source,air,entrance window,and dead layer of a detector must be considered in the measurement of monoenergetic alpha particles,along with statistical noise and other factors that collectively cause the alpha spectrum to exhibit a well-known low-energy tail.Therefore,the estabUshment of an alpha spectrum detector response function from the perspective of a signaling system must consider the various factors mentioned above.The detector response function is the convolution of an alphaparticle pulse function,two exponential functions,and a Gaussian function,followed by calculation of the parameters of the detector response function using the weighted leastsquares fitting method as proposed in this paper.In our experiment,^(239)Pu alpha spectra were measured by a highresolution,passivated implanted planar silicon(PIPS)detector at 10 levels of vacuum and 10 source-detector distances.The spectrum-fitting results were excellent as evaluated by reduced Chi-square(x^2) and correlation coefficients.Finally,the variation of parameters with vacuum level and source-detector distance was studied.Results demonstrate that σ,τ_1,and τ_2 exhibit no obvious trend of variation with vacuum in the range 2000-20,000 mTorr,and at a confidence level of 95%,the values of τ_1 and τ_2 decline in a similar fashion with source-detector distance by the power exponential function,while the value of a declines linearly.展开更多
With respect to the gamma spectrum, the energy resolution improves with increase in energy. The counts of full energy peak change with energy, and this approximately complies with the Gaussian distribution. This study...With respect to the gamma spectrum, the energy resolution improves with increase in energy. The counts of full energy peak change with energy, and this approximately complies with the Gaussian distribution. This study mainly examines a method to deconvolve the LaBr_3:Ce gamma spectrum with a detector response matrix constructing algorithm based on energy resolution calibration.In the algorithm, the full width at half maximum(FWHM)of full energy peak was calculated by the cubic spline interpolation algorithm and calibrated by a square root of a quadratic function that changes with the energy. Additionally, the detector response matrix was constructed to deconvolve the gamma spectrum. Furthermore, an improved SNIP algorithm was proposed to eliminate the background. In the experiment, several independent peaks of ^(152)Eu,^(137)Cs, and ^(60)Co sources were detected by a LaBr_3:Ce scintillator that were selected to calibrate the energy resolution. The Boosted Gold algorithm was applied to deconvolve the gamma spectrum. The results showed that the peak position difference between the experiment and the deconvolution was within ± 2 channels and the relative error of peak area was approximately within 0.96–6.74%. Finally, a ^(133) Ba spectrum was deconvolved to verify the efficiency and accuracy of the algorithm in unfolding the overlapped peaks.展开更多
The GECAM series of satellites utilizes LaBr_(3)(Ce),LaBr_(3)(Ce,Sr),and NaI(Tl)crystals as sensitive materials for gamma-ray detectors(GRDs).To investigate the nonlinearity in the detection of low-energy gamma rays a...The GECAM series of satellites utilizes LaBr_(3)(Ce),LaBr_(3)(Ce,Sr),and NaI(Tl)crystals as sensitive materials for gamma-ray detectors(GRDs).To investigate the nonlinearity in the detection of low-energy gamma rays and address the errors in the calibration of the E-C relationship,comprehensive tests and comparative studies of the three aforementioned crystals were conducted using Compton electrons,radioactive sources,and mono-energetic X-rays.The nonlinearity test results of the Compton electrons and X-rays demonstrated substantial differences,with all three crystals presenting a higher nonlinearity for X/-rays than for Compton electrons.Despite the LaBr_(3)(Ce)and LaBr_(3)(Ce,Sr)crystals having higher absolute light yields,they exhibited a noticeable nonlinear decrease in the light yield,especially at energies below 400 keV.The NaI(Tl)crystal demonstrated an"excess"light output in the 6-200 keV range,reaching a maximum"excess"of 9.2%at 30 keV in the X-ray testing and up to 15.5%at 14 keV during Compton electron testing,indicating a significant advantage in the detection of low-energy gamma rays.Furthermore,we explored the underlying causes of the observed nonlinearity in these crystals.This study not only elucidates the detector responses of GECAM,but also initiates a comprehensive investigation of the nonlinearity of domestically produced lanthanum bromide and sodium iodide crystals.展开更多
A new scintillating fiber detector inside magnetic shielding tube was designed and assembled for use in the next round of fusion experiments in the experimental advanced superconducting tokamak to provide D–T neutron...A new scintillating fiber detector inside magnetic shielding tube was designed and assembled for use in the next round of fusion experiments in the experimental advanced superconducting tokamak to provide D–T neutron yield with time resolution.In this study,Geant4 simulations were used to obtain the pulse height spectra for ideal signals produced when detecting neutrons and gamma rays of multiple energies.One of the main sources of interference was found to be low-energy neutrons below 10–5 MeV,which can generate numerous secondary particles in the detector components,such as the magnetic shielding tube,leading to high-amplitude output signals.To address this issue,a compact thermal neutron shield containing a 1-mm Cd layer outside the magnetic shielding tube and a 5-mm inner Pb layer was specifically designed.Adverse effects on the measurement of fast neutrons and the shielding effect on gamma rays were considered.This can suppress the height of the signals caused by thermal neutrons to a level below the height corresponding to neutrons above 4 MeV because the yield of the latter is used for detector calibration.In addition,the detector has relatively flat sensitivity curves in the fast neutron region,with the intrinsic detection efficiencies(IDEs)of approximately 40%.For gamma rays with energies that are not too high(<8 MeV),the IDEs of the detector are only approximately 20%,whereas for gamma rays below 1 MeV,the response curve cuts off earlier in the low-energy region,which is beneficial for avoiding counting saturation and signal accumulation.展开更多
The properties of a Lanthanum bromide(LaBr3)detector and its response functions were investigated via experiments and simulations in this paper.The LaBr3detector had good relative energy resolution and higher efficien...The properties of a Lanthanum bromide(LaBr3)detector and its response functions were investigated via experiments and simulations in this paper.The LaBr3detector had good relative energy resolution and higher efficiency than a high-purity germanium detector.Monte Carlo and other numerical methods were used to calculate the efficiencies of a LaBr3detector with a square collimation window.A model of the numerical method was established based on a pure geometric model that was consistent with the experimental situation.The results showed that the detector response functions calculated by these methods were in great agreement with experimental results.展开更多
NaI(T1) scintillation detectors have been widely applied for gamma-ray spectrum measurements owing to advantages such as high detection efficiency and low price.However,the mitigation of the limited energy resolution ...NaI(T1) scintillation detectors have been widely applied for gamma-ray spectrum measurements owing to advantages such as high detection efficiency and low price.However,the mitigation of the limited energy resolution of these detectors,which detracts from an accurate analysis of the instrument spectra obtained,remains a crucial need.Based on the physical properties and spectrum formation processes of NaI(T1) scintillation detectors,the detector response to gamma photons with different energies is represented by photopeaks that are approximately Gaussian in shape with unique full-width-at-half-maximum(FWHM) values.The FWHM is established as a detector parameter based on resolution calibrations and is used in the construction of a general Gaussian response matrix,which is employed for the inverse decomposition of gamma spectra obtained from the detector.The Gold and Boosted Gold iterative algorithms are employed to accelerate the decomposition of the measured spectrum.Tests of the inverse decomposition method on multiple simulated overlapping peaks and on experimentally obtained U and Th radionuclide series spectra verify the practicability of the method,particularly in the low-energy region of the spectrum,providing for the accurate qualitative and quantitative analysis of radionuclides.展开更多
The Na I(Tl) scintillation detector has a number of unique advantages, including wide use, high light yield,and its low price. It is difficult to obtain the decomposition of instrument response spectrum because of lim...The Na I(Tl) scintillation detector has a number of unique advantages, including wide use, high light yield,and its low price. It is difficult to obtain the decomposition of instrument response spectrum because of limitations associated with the Na I(Tl) scintillation detector's energy resolution. This paper, based on the physical process of c photons released from decay nuclides, generating an instrument response spectrum, uses the Monte Carlo method to simulate c photons with Na I(Tl) scintillation detector interaction. The Monte Carlo response matrix is established by different single energy γ-rays with detector effects. The Gold and the improved Boosted-Gold iterative algorithms have also been used in this paper to solve the response matrix parameters through decomposing tests,such as simulating a multi-characteristic energy c-ray spectrum and simulating synthesized overlapping peaks cray spectrum. An inversion decomposition of the c instrument response spectrum for measured samples(U series, Th series and U–Th mixed sources, among others)can be achieved under the response matrix. The decomposing spectrum can be better distinguished between the similar energy characteristic peaks, which improve the error levels of activity analysis caused by the overlapping peak with significant effects.展开更多
Usually, there are several methods, e.g. experiment, interpolation experiment-based, analytic function, and Monte-Carlo simulation, to calculate the response functions in LaBr3(Ce) detectors. In logging applications...Usually, there are several methods, e.g. experiment, interpolation experiment-based, analytic function, and Monte-Carlo simulation, to calculate the response functions in LaBr3(Ce) detectors. In logging applications, the experiment-based methods cannot be adopted because of their limitations. Analytic function has the advantage of fast calculating speed, but it is very difficult to take into account many effects that occur in practical applications. On the contrary, Monte-Carlo simulation can deal with physical and geometric configurations very tactfully. It has a distinct advantage for calculating the functions with complex configurations in borehole. A new application of LaBr3(Ce) detector is in natural gamma-rays borehole spectrometer for uranium well logging. Calculation of response functions must consider a series of physical and geometric factors under complex logging conditions, including earth formations and its relevant parameters, different energies, material and thickness of the casings, the fluid between the two tubes, and relative position of the LaBr3(Ce) crystal to steel ingot at the front of logging tube. The present work establishes Monte-Carlo simulation models for the above-mentioned situations, and then performs calculations for main gamma-rays from natural radio-elements series. The response functions can offer experimental directions for the design of borehole detection system, and provide technique basis and basic data for spectral analysis of natural gamma-rays, and for sonrceless calibration in uranium quantitative interpretation.展开更多
The relative response factors(RRFs) for noble gas(Ng) were determined on a pulsed discharge helium photoionization detector. Using ab initio method, the atomic orbitals of noble gas were calculated and used to det...The relative response factors(RRFs) for noble gas(Ng) were determined on a pulsed discharge helium photoionization detector. Using ab initio method, the atomic orbitals of noble gas were calculated and used to determine the number of ionizable electrons on the basis of the continuous emission of He2. The molar responses of noble gases is well correlated with the number of ionizable electrons.展开更多
A new flame detector with one ultraviolet and two infrared detectors is designed. The ultraviolet detector is of rapid response(≤10 μs) while the two infrared detectors usually have a response time of more than 5 ms...A new flame detector with one ultraviolet and two infrared detectors is designed. The ultraviolet detector is of rapid response(≤10 μs) while the two infrared detectors usually have a response time of more than 5 ms. The ultraviolet detector is applied to deal with the flame of large scales. When facing the flame of mid or small scales, the three detectors cooperate. Employing the high-order derivatives of the sample data of the infrared circuits to improve the sensitivity, the response speed is greatly improved. The data of the temperature sensor is used to adjust circuit parameters in real time, thus reducing the effect of temperature drift. The flame detectors are tested at different distances and the response time is as rapid as 0.65 ms. The test results show that the new flame detector has the characteristics of high speed and a low rate of false alarms.展开更多
In this paper, we describe an improved adaptive partial response maximum likelihood (PRML) method combining modulation code tbr signal waveform modulation multi-level disc. This improved adaptive PRML method employs...In this paper, we describe an improved adaptive partial response maximum likelihood (PRML) method combining modulation code tbr signal waveform modulation multi-level disc. This improved adaptive PRML method employs partial response equalizer and adaptive viterbi detector combining modulation code. Compared with the traditional adaptive PRML detector, the improved PRML detector additionally employs illogical sequence detector and corrector. Illogical sequence detector and corrector can aw)id the appearance of illogical sequences effectively, which do not follow the law of modulation code for signal waveform modulation multi-level disc, and obtain the correct sequences. We implement the improved PRML detector using a DSP and an FPGA chip. The experimental results show good performance. The higher efficient and lower complexity can be obtained by using the improved PRML method than by using the previous PRML method. Meanwhile, resource utilization of the improved PRML detector is not changed, but the bit error rate (BER) is reduced by more than 20%.展开更多
An electronic personal dosimeter mainly uses a Si-PIN photodiode as X-and gamma-ray detectors.The photon energy response of this instrument is inconsistent in the case of no correction,which seriously affects the accu...An electronic personal dosimeter mainly uses a Si-PIN photodiode as X-and gamma-ray detectors.The photon energy response of this instrument is inconsistent in the case of no correction,which seriously affects the accurate monitoring of personal dose equivalent H_p(10)parameters for radiation workers.For this reason,in this paper we propose a method of combining composite screen detection technology,multichannel measurement technology,and the channel ratio method to achieve accurate measurement of the personal dose equivalent parameters.According to China National Standard GB/T 13161-2003 and National Verification Regulation JJG 1009-2006,the instrument was tested in the energy range between 48 keV and 1.25 MeV.The experimental results showed that the difference of energy response to ^(137)C_S corrected by the new method was almost constant within ±6.0%,which fulfilled the ±30% requirement of GB/T 13161-2003 and JJG1009-2006.Meanwhile,the method proposed obtained energy information regarding the radiation field.展开更多
To develop a NaI (T1) detector for in situ radioactivity monitoring in the marine environment and enhance the confidence of the probability of the gamma-spectrum analysis, Monte Carlo simulations using the Monte Car...To develop a NaI (T1) detector for in situ radioactivity monitoring in the marine environment and enhance the confidence of the probability of the gamma-spectrum analysis, Monte Carlo simulations using the Monte Carlo N-Particle ( MNCP ) code were performed to provide the response spectra of some interested radionuclides and the background spectra originating from the natural radionuclides in seawater recorded by a NaI (T1) detector. A newly developed 75 mm × 75 mm NaI (T1) detector was calibrated using four reference radioactive sources 137Cs, 60Co, 40K and 54Mn in the laboratory before the field measurements in seawater. A simulation model was established for the detector immersed in seawater. The simulated spectra were all broadened with Gaussian pulses to reflect the statistical fluctuations and electrical noise in the real measurement. The simulated spectra show that the single-energy photons into the detector are mostly scattering low-energy photons and the high background in the low energy region mainly originates from the Compton effect of the high energy y-rays of natural radionuclides in seawater. The simulated background spectrum was compared with the experimental one recorded in field measurement and they seem to be in good agreement. The simulation method and spectra can be used for the accurate analysis of the filed measurement results of low concentration radioactivity in seawater.展开更多
A semi-empirical detector response function(DRF)model is established to fit characteristic X-ray peaks recorded in Si-PIN spectra,which is mainly composed of four components:a truncated step function,a Gaussian-shaped...A semi-empirical detector response function(DRF)model is established to fit characteristic X-ray peaks recorded in Si-PIN spectra,which is mainly composed of four components:a truncated step function,a Gaussian-shaped full-energy peak,a Gaussian-shaped Si escape peak and an exponential tail.A simple but useful statistical distribution-based analytic method(SDA)is proposed to achieve accurate values of standard deviation for characteristic X-ray peaks.And the values of the model parameters except for the standard deviation are obtained by weighted least-squares fitting of the pulse-height spectra from a number of pure-element samples.A Monte Carlo model is also established to simulate the X-ray measurement setup.The simulated flux spectrum can be transformed by Si-PIN detector response function to real pulse height spectrum as studied in this work.Finally,the fitting result for a copper alloy sample was compared with experimental spectra,and the validity of the present method was demonstrated.展开更多
A fast-speed pulse detector based on n-type Si-Sehottky diode mounted in the waveguide is investigated. The relation of the fast-speed pulse detector between response time and 3 dB bandwidth is analyzed. By adopting t...A fast-speed pulse detector based on n-type Si-Sehottky diode mounted in the waveguide is investigated. The relation of the fast-speed pulse detector between response time and 3 dB bandwidth is analyzed. By adopting the tunable circuit, the matched bandwidth is achieved as wide as possible. Experi- mental results show that the pulse response time of the detector is less than 150 ps within random carrier signal 500 MHz bandwidth range between 35 GHz to 39 GHz via tuning circuit. The detector is very easy to operate because it does not need bias current or synch-pulse source.展开更多
Si-based optical position-sensitive detectors(PSDs)have stimulated the interest of researchers due to their wide range of practical applications.However,due to the rigidity and fragility of Si crystals,the application...Si-based optical position-sensitive detectors(PSDs)have stimulated the interest of researchers due to their wide range of practical applications.However,due to the rigidity and fragility of Si crystals,the applications of flexible PSDs have been limited.Therefore,we presented a flexible broadband PSD based on a WS_(2)/Si heterostructure for the first time.A scalable sputtering method was used to deposit WS_(2)thin films onto the etched ultrathin crystalline Si surface.The fabricated flexible PSD device has a broad spectral response in the wavelength range of 450-1350 nm,with a high position sensitivity of~539.8 mV·mm^(−1)and a fast response of 2.3μs,thanks to the strong light absorption,the built-in electrical field at the WS_(2)/Si interface,and facilitated transport.Furthermore,mechanical-bending tests revealed that after 200 mechanical-bending cycles,the WS_(2)/Si PSDs have excellent mechanical flexibility,stability,and durability,demonstrating the great potential in wearable PSDs with competitive performance.展开更多
In this paper, we study the effect of the drain current on terahertz detection for Si metal-oxide semiconductor fieldeffect transistors(MOSFETs) both theoretically and experimentally. The analytical model, which is ...In this paper, we study the effect of the drain current on terahertz detection for Si metal-oxide semiconductor fieldeffect transistors(MOSFETs) both theoretically and experimentally. The analytical model, which is based on the smallsignal equivalent circuit of MOSFETs, predicts the significant improvement of the voltage responsivity Rv with the bias current. The experiment on antennas integrated with MOSFETs agrees with the analytical model, but the Rv improvement is accompanied first by a decrease, then an increase of the low-noise equivalent power(NEP) with the applied current. We determine the tradeoff between the low-NEP and high-Rv for the current-biased detectors. As the best-case scenario, we obtained an improvement of about six times in Rv without the cost of a higher NEP. We conclude that the current supply scheme can provide high-quality signal amplification in practical CMOS terahertz detection.展开更多
In order to calculate absolute efficiency of the BF3 detector, MCNP/4C code is applied to calculate relative efficiency of the BF3 detector first, and then absolute efficiency is figured out through mathematical techn...In order to calculate absolute efficiency of the BF3 detector, MCNP/4C code is applied to calculate relative efficiency of the BF3 detector first, and then absolute efficiency is figured out through mathematical techniques. Finally an energy response curve of the BF3 detector for 1~20 MeV neutrons is derived. It turns out that efficiency of BF3 detector are relatively uniform for 2~16 MeV neutrons.展开更多
基金supported by the National Natural Science Foundation of China(Nos.41374130 and 41604154)Opening Foundation of Sichuan Provincial Key Lab of Applied Nuclear Techniques in Geosciences(No.gnzds2014003)the Open Fund of Robot Technology Used for Special Environment Key Laboratory of Sichuan Province(13zxtk04)
文摘Effect factors of the absorption of the source,air,entrance window,and dead layer of a detector must be considered in the measurement of monoenergetic alpha particles,along with statistical noise and other factors that collectively cause the alpha spectrum to exhibit a well-known low-energy tail.Therefore,the estabUshment of an alpha spectrum detector response function from the perspective of a signaling system must consider the various factors mentioned above.The detector response function is the convolution of an alphaparticle pulse function,two exponential functions,and a Gaussian function,followed by calculation of the parameters of the detector response function using the weighted leastsquares fitting method as proposed in this paper.In our experiment,^(239)Pu alpha spectra were measured by a highresolution,passivated implanted planar silicon(PIPS)detector at 10 levels of vacuum and 10 source-detector distances.The spectrum-fitting results were excellent as evaluated by reduced Chi-square(x^2) and correlation coefficients.Finally,the variation of parameters with vacuum level and source-detector distance was studied.Results demonstrate that σ,τ_1,and τ_2 exhibit no obvious trend of variation with vacuum in the range 2000-20,000 mTorr,and at a confidence level of 95%,the values of τ_1 and τ_2 decline in a similar fashion with source-detector distance by the power exponential function,while the value of a declines linearly.
基金supported by the National Natural Science Foundation of China(Nos.41374130 and 41604154)
文摘With respect to the gamma spectrum, the energy resolution improves with increase in energy. The counts of full energy peak change with energy, and this approximately complies with the Gaussian distribution. This study mainly examines a method to deconvolve the LaBr_3:Ce gamma spectrum with a detector response matrix constructing algorithm based on energy resolution calibration.In the algorithm, the full width at half maximum(FWHM)of full energy peak was calculated by the cubic spline interpolation algorithm and calibrated by a square root of a quadratic function that changes with the energy. Additionally, the detector response matrix was constructed to deconvolve the gamma spectrum. Furthermore, an improved SNIP algorithm was proposed to eliminate the background. In the experiment, several independent peaks of ^(152)Eu,^(137)Cs, and ^(60)Co sources were detected by a LaBr_3:Ce scintillator that were selected to calibrate the energy resolution. The Boosted Gold algorithm was applied to deconvolve the gamma spectrum. The results showed that the peak position difference between the experiment and the deconvolution was within ± 2 channels and the relative error of peak area was approximately within 0.96–6.74%. Finally, a ^(133) Ba spectrum was deconvolved to verify the efficiency and accuracy of the algorithm in unfolding the overlapped peaks.
基金This work was supported by the National Key Research and Development Program(Nos.2022YFB3503600 and 2021YFA0718500)Strategic Priority Research Program of the Chinese Academy of Sciences(Nos.XDA15360102)National Natural Science Foundation of China(Nos.12273042 and 12075258).
文摘The GECAM series of satellites utilizes LaBr_(3)(Ce),LaBr_(3)(Ce,Sr),and NaI(Tl)crystals as sensitive materials for gamma-ray detectors(GRDs).To investigate the nonlinearity in the detection of low-energy gamma rays and address the errors in the calibration of the E-C relationship,comprehensive tests and comparative studies of the three aforementioned crystals were conducted using Compton electrons,radioactive sources,and mono-energetic X-rays.The nonlinearity test results of the Compton electrons and X-rays demonstrated substantial differences,with all three crystals presenting a higher nonlinearity for X/-rays than for Compton electrons.Despite the LaBr_(3)(Ce)and LaBr_(3)(Ce,Sr)crystals having higher absolute light yields,they exhibited a noticeable nonlinear decrease in the light yield,especially at energies below 400 keV.The NaI(Tl)crystal demonstrated an"excess"light output in the 6-200 keV range,reaching a maximum"excess"of 9.2%at 30 keV in the X-ray testing and up to 15.5%at 14 keV during Compton electron testing,indicating a significant advantage in the detection of low-energy gamma rays.Furthermore,we explored the underlying causes of the observed nonlinearity in these crystals.This study not only elucidates the detector responses of GECAM,but also initiates a comprehensive investigation of the nonlinearity of domestically produced lanthanum bromide and sodium iodide crystals.
基金supported by the University Synergy Innovation Program of Anhui Province(No.GXXT-2022-001)the Institute of Energy,Hefei Comprehensive National Science Center(Anhui Energy Laboratory)under Grant No.21KZS205 and 21KZL401the Comprehensive Research Facility for Fusion Technology Program of China(No.2018-000052-73-01-001228).
文摘A new scintillating fiber detector inside magnetic shielding tube was designed and assembled for use in the next round of fusion experiments in the experimental advanced superconducting tokamak to provide D–T neutron yield with time resolution.In this study,Geant4 simulations were used to obtain the pulse height spectra for ideal signals produced when detecting neutrons and gamma rays of multiple energies.One of the main sources of interference was found to be low-energy neutrons below 10–5 MeV,which can generate numerous secondary particles in the detector components,such as the magnetic shielding tube,leading to high-amplitude output signals.To address this issue,a compact thermal neutron shield containing a 1-mm Cd layer outside the magnetic shielding tube and a 5-mm inner Pb layer was specifically designed.Adverse effects on the measurement of fast neutrons and the shielding effect on gamma rays were considered.This can suppress the height of the signals caused by thermal neutrons to a level below the height corresponding to neutrons above 4 MeV because the yield of the latter is used for detector calibration.In addition,the detector has relatively flat sensitivity curves in the fast neutron region,with the intrinsic detection efficiencies(IDEs)of approximately 40%.For gamma rays with energies that are not too high(<8 MeV),the IDEs of the detector are only approximately 20%,whereas for gamma rays below 1 MeV,the response curve cuts off earlier in the low-energy region,which is beneficial for avoiding counting saturation and signal accumulation.
基金Supported by Research Fund for the Doctoral Program of Higher Education of China(No.20120073130009)National Natural Science Foundation of China(No.11175118)Research and innovation project of Shanghai Municipal Education Commission(No.12ZZ022)
文摘The properties of a Lanthanum bromide(LaBr3)detector and its response functions were investigated via experiments and simulations in this paper.The LaBr3detector had good relative energy resolution and higher efficiency than a high-purity germanium detector.Monte Carlo and other numerical methods were used to calculate the efficiencies of a LaBr3detector with a square collimation window.A model of the numerical method was established based on a pure geometric model that was consistent with the experimental situation.The results showed that the detector response functions calculated by these methods were in great agreement with experimental results.
基金supported by the National Natural Science Foundation of China(Grant No.11365001)National Major Scientific Equipment Development Projects(Grant No.041514065)+2 种基金the Educational Commission of Jiangxi Province of China(Grant No.GJJ13464)Plan of Science and Technology of Jiangxi Province(Grant No.20141BBE50024)the Fundamental Science on Radioactive Geology and Exploration Technology Laboratory,East China Institute of Technology(Grant No.RGET1316)
文摘NaI(T1) scintillation detectors have been widely applied for gamma-ray spectrum measurements owing to advantages such as high detection efficiency and low price.However,the mitigation of the limited energy resolution of these detectors,which detracts from an accurate analysis of the instrument spectra obtained,remains a crucial need.Based on the physical properties and spectrum formation processes of NaI(T1) scintillation detectors,the detector response to gamma photons with different energies is represented by photopeaks that are approximately Gaussian in shape with unique full-width-at-half-maximum(FWHM) values.The FWHM is established as a detector parameter based on resolution calibrations and is used in the construction of a general Gaussian response matrix,which is employed for the inverse decomposition of gamma spectra obtained from the detector.The Gold and Boosted Gold iterative algorithms are employed to accelerate the decomposition of the measured spectrum.Tests of the inverse decomposition method on multiple simulated overlapping peaks and on experimentally obtained U and Th radionuclide series spectra verify the practicability of the method,particularly in the low-energy region of the spectrum,providing for the accurate qualitative and quantitative analysis of radionuclides.
基金supported by National Natural Science Foundation of China(No.11365001)National Major Scientific Equipment Development Projects(No.041514065)+1 种基金Natural Science Foundation of Jiangxi(No.20161BAB201035)Fundamental Science on Radioactive Geology and Exploration Technology Laboratory,East China Institute of Technology(No.RGET1316)
文摘The Na I(Tl) scintillation detector has a number of unique advantages, including wide use, high light yield,and its low price. It is difficult to obtain the decomposition of instrument response spectrum because of limitations associated with the Na I(Tl) scintillation detector's energy resolution. This paper, based on the physical process of c photons released from decay nuclides, generating an instrument response spectrum, uses the Monte Carlo method to simulate c photons with Na I(Tl) scintillation detector interaction. The Monte Carlo response matrix is established by different single energy γ-rays with detector effects. The Gold and the improved Boosted-Gold iterative algorithms have also been used in this paper to solve the response matrix parameters through decomposing tests,such as simulating a multi-characteristic energy c-ray spectrum and simulating synthesized overlapping peaks cray spectrum. An inversion decomposition of the c instrument response spectrum for measured samples(U series, Th series and U–Th mixed sources, among others)can be achieved under the response matrix. The decomposing spectrum can be better distinguished between the similar energy characteristic peaks, which improve the error levels of activity analysis caused by the overlapping peak with significant effects.
基金supported by Key Laboratory of Radioactive Geology and Exploration Technology Fundamental Science for National Defense(No. 2011RGET04)East China Institute of Technology, and National Natural Science Foundation of China (No. 41074078)
文摘Usually, there are several methods, e.g. experiment, interpolation experiment-based, analytic function, and Monte-Carlo simulation, to calculate the response functions in LaBr3(Ce) detectors. In logging applications, the experiment-based methods cannot be adopted because of their limitations. Analytic function has the advantage of fast calculating speed, but it is very difficult to take into account many effects that occur in practical applications. On the contrary, Monte-Carlo simulation can deal with physical and geometric configurations very tactfully. It has a distinct advantage for calculating the functions with complex configurations in borehole. A new application of LaBr3(Ce) detector is in natural gamma-rays borehole spectrometer for uranium well logging. Calculation of response functions must consider a series of physical and geometric factors under complex logging conditions, including earth formations and its relevant parameters, different energies, material and thickness of the casings, the fluid between the two tubes, and relative position of the LaBr3(Ce) crystal to steel ingot at the front of logging tube. The present work establishes Monte-Carlo simulation models for the above-mentioned situations, and then performs calculations for main gamma-rays from natural radio-elements series. The response functions can offer experimental directions for the design of borehole detection system, and provide technique basis and basic data for spectral analysis of natural gamma-rays, and for sonrceless calibration in uranium quantitative interpretation.
基金the National Natural Science Foundation of China(No.20503010)
文摘The relative response factors(RRFs) for noble gas(Ng) were determined on a pulsed discharge helium photoionization detector. Using ab initio method, the atomic orbitals of noble gas were calculated and used to determine the number of ionizable electrons on the basis of the continuous emission of He2. The molar responses of noble gases is well correlated with the number of ionizable electrons.
基金Project of Special Zone for National Defense Science and Technology Innovation(No.Y7GW04C001)
文摘A new flame detector with one ultraviolet and two infrared detectors is designed. The ultraviolet detector is of rapid response(≤10 μs) while the two infrared detectors usually have a response time of more than 5 ms. The ultraviolet detector is applied to deal with the flame of large scales. When facing the flame of mid or small scales, the three detectors cooperate. Employing the high-order derivatives of the sample data of the infrared circuits to improve the sensitivity, the response speed is greatly improved. The data of the temperature sensor is used to adjust circuit parameters in real time, thus reducing the effect of temperature drift. The flame detectors are tested at different distances and the response time is as rapid as 0.65 ms. The test results show that the new flame detector has the characteristics of high speed and a low rate of false alarms.
基金Project supported by the National Natural Science Foundation of China(Grant No.61127010)
文摘In this paper, we describe an improved adaptive partial response maximum likelihood (PRML) method combining modulation code tbr signal waveform modulation multi-level disc. This improved adaptive PRML method employs partial response equalizer and adaptive viterbi detector combining modulation code. Compared with the traditional adaptive PRML detector, the improved PRML detector additionally employs illogical sequence detector and corrector. Illogical sequence detector and corrector can aw)id the appearance of illogical sequences effectively, which do not follow the law of modulation code for signal waveform modulation multi-level disc, and obtain the correct sequences. We implement the improved PRML detector using a DSP and an FPGA chip. The experimental results show good performance. The higher efficient and lower complexity can be obtained by using the improved PRML method than by using the previous PRML method. Meanwhile, resource utilization of the improved PRML detector is not changed, but the bit error rate (BER) is reduced by more than 20%.
基金supported by the National Key Scientific Instruments To Develop Dedicated(2013YQ090811)
文摘An electronic personal dosimeter mainly uses a Si-PIN photodiode as X-and gamma-ray detectors.The photon energy response of this instrument is inconsistent in the case of no correction,which seriously affects the accurate monitoring of personal dose equivalent H_p(10)parameters for radiation workers.For this reason,in this paper we propose a method of combining composite screen detection technology,multichannel measurement technology,and the channel ratio method to achieve accurate measurement of the personal dose equivalent parameters.According to China National Standard GB/T 13161-2003 and National Verification Regulation JJG 1009-2006,the instrument was tested in the energy range between 48 keV and 1.25 MeV.The experimental results showed that the difference of energy response to ^(137)C_S corrected by the new method was almost constant within ±6.0%,which fulfilled the ±30% requirement of GB/T 13161-2003 and JJG1009-2006.Meanwhile,the method proposed obtained energy information regarding the radiation field.
基金financial support from the International Science & Technology Cooperation Program of China (No. 2013DFR90220)National Natural Science Foundation of China (No. 41206076)Qingdao Applied Basic Research Project (NO. 14-2-4-94-jch)
文摘To develop a NaI (T1) detector for in situ radioactivity monitoring in the marine environment and enhance the confidence of the probability of the gamma-spectrum analysis, Monte Carlo simulations using the Monte Carlo N-Particle ( MNCP ) code were performed to provide the response spectra of some interested radionuclides and the background spectra originating from the natural radionuclides in seawater recorded by a NaI (T1) detector. A newly developed 75 mm × 75 mm NaI (T1) detector was calibrated using four reference radioactive sources 137Cs, 60Co, 40K and 54Mn in the laboratory before the field measurements in seawater. A simulation model was established for the detector immersed in seawater. The simulated spectra were all broadened with Gaussian pulses to reflect the statistical fluctuations and electrical noise in the real measurement. The simulated spectra show that the single-energy photons into the detector are mostly scattering low-energy photons and the high background in the low energy region mainly originates from the Compton effect of the high energy y-rays of natural radionuclides in seawater. The simulated background spectrum was compared with the experimental one recorded in field measurement and they seem to be in good agreement. The simulation method and spectra can be used for the accurate analysis of the filed measurement results of low concentration radioactivity in seawater.
基金Supported by National Natural Science Foundation of China(Nos.40974065 and 41025015)Scientific and Technological Innovative Team in Sichuan Province(No.2011JTD0013)"863"Program of China(No.2012AA063501)
文摘A semi-empirical detector response function(DRF)model is established to fit characteristic X-ray peaks recorded in Si-PIN spectra,which is mainly composed of four components:a truncated step function,a Gaussian-shaped full-energy peak,a Gaussian-shaped Si escape peak and an exponential tail.A simple but useful statistical distribution-based analytic method(SDA)is proposed to achieve accurate values of standard deviation for characteristic X-ray peaks.And the values of the model parameters except for the standard deviation are obtained by weighted least-squares fitting of the pulse-height spectra from a number of pure-element samples.A Monte Carlo model is also established to simulate the X-ray measurement setup.The simulated flux spectrum can be transformed by Si-PIN detector response function to real pulse height spectrum as studied in this work.Finally,the fitting result for a copper alloy sample was compared with experimental spectra,and the validity of the present method was demonstrated.
基金supported by the National Natural Science Foundation of China under Grant No. 60801028the Specialized Research fund for the Doctoral Program of Higher Education of China under Grant No. 20070614034
文摘A fast-speed pulse detector based on n-type Si-Sehottky diode mounted in the waveguide is investigated. The relation of the fast-speed pulse detector between response time and 3 dB bandwidth is analyzed. By adopting the tunable circuit, the matched bandwidth is achieved as wide as possible. Experi- mental results show that the pulse response time of the detector is less than 150 ps within random carrier signal 500 MHz bandwidth range between 35 GHz to 39 GHz via tuning circuit. The detector is very easy to operate because it does not need bias current or synch-pulse source.
基金supported by the National Natural Science Foundation of China(No.51972341)the Shandong Natural Science Foundation,China(No.ZR2020MA069).
文摘Si-based optical position-sensitive detectors(PSDs)have stimulated the interest of researchers due to their wide range of practical applications.However,due to the rigidity and fragility of Si crystals,the applications of flexible PSDs have been limited.Therefore,we presented a flexible broadband PSD based on a WS_(2)/Si heterostructure for the first time.A scalable sputtering method was used to deposit WS_(2)thin films onto the etched ultrathin crystalline Si surface.The fabricated flexible PSD device has a broad spectral response in the wavelength range of 450-1350 nm,with a high position sensitivity of~539.8 mV·mm^(−1)and a fast response of 2.3μs,thanks to the strong light absorption,the built-in electrical field at the WS_(2)/Si interface,and facilitated transport.Furthermore,mechanical-bending tests revealed that after 200 mechanical-bending cycles,the WS_(2)/Si PSDs have excellent mechanical flexibility,stability,and durability,demonstrating the great potential in wearable PSDs with competitive performance.
基金Project supported by the National Key R&D Program of China(Grant No.2016YFB-0402403)the Natural Science Foundation of Jiangsu Province,China(Grant No.BK20141321)+1 种基金CAST Project,China(Grant No.08201601)the National Science Foundation for Young Scholars of China(Grant No.61404072)
文摘In this paper, we study the effect of the drain current on terahertz detection for Si metal-oxide semiconductor fieldeffect transistors(MOSFETs) both theoretically and experimentally. The analytical model, which is based on the smallsignal equivalent circuit of MOSFETs, predicts the significant improvement of the voltage responsivity Rv with the bias current. The experiment on antennas integrated with MOSFETs agrees with the analytical model, but the Rv improvement is accompanied first by a decrease, then an increase of the low-noise equivalent power(NEP) with the applied current. We determine the tradeoff between the low-NEP and high-Rv for the current-biased detectors. As the best-case scenario, we obtained an improvement of about six times in Rv without the cost of a higher NEP. We conclude that the current supply scheme can provide high-quality signal amplification in practical CMOS terahertz detection.
文摘In order to calculate absolute efficiency of the BF3 detector, MCNP/4C code is applied to calculate relative efficiency of the BF3 detector first, and then absolute efficiency is figured out through mathematical techniques. Finally an energy response curve of the BF3 detector for 1~20 MeV neutrons is derived. It turns out that efficiency of BF3 detector are relatively uniform for 2~16 MeV neutrons.