Groundwater is an important source of drinking water.Groundwater pollution severely endangers drinking water safety and sustainable social development.In the case of groundwater pollution,the top priority is to identi...Groundwater is an important source of drinking water.Groundwater pollution severely endangers drinking water safety and sustainable social development.In the case of groundwater pollution,the top priority is to identify pollution sources,and accurate information on pollution sources is the premise of efficient remediation.Then,an appropriate pollution remediation scheme should be developed according to information on pollution sources,site conditions,and economic costs.The methods for identifying pollution sources mainly include geophysical exploration,geochemistry,isotopic tracing,and numerical modeling.Among these identification methods,only the numerical modeling can recognize various information on pollution sources,while other methods can only identify a certain aspect of pollution sources.The remediation technologies of groundwater can be divided into in-situ and ex-situ remediation technologies according to the remediation location.The in-situ remediation technologies enjoy low costs and a wide remediation range,but their remediation performance is prone to be affected by environmental conditions and cause secondary pollution.The ex-situ remediation technologies boast high remediation efficiency,high processing capacity,and high treatment concentration but suffer high costs.Different methods for pollution source identification and remediation technologies are applicable to different conditions.To achieve the expected identification and remediation results,it is feasible to combine several methods and technologies according to the actual hydrogeological conditions of contaminated sites and the nature of pollutants.Additionally,detailed knowledge about the hydrogeological conditions and stratigraphic structure of the contaminated site is the basis of all work regardless of the adopted identification methods or remediation technologies.展开更多
Groundwater with high arsenic(As) content seriously threatens human life and health. Drinking high-As groundwater for a long time will lead to various pathological changes such as skin cancer, liver cancer,and kidney ...Groundwater with high arsenic(As) content seriously threatens human life and health. Drinking high-As groundwater for a long time will lead to various pathological changes such as skin cancer, liver cancer,and kidney cancer. High-As groundwater has become one of the most serious environmental geological problems in China and even internationally. This paper aims to systematically summarize the sources,migration, distribution, toxicological effects, and treatment techniques of As in natural groundwater in China based on a large number of literature surveys. High-As groundwater in China is mainly distributed in the inland basins in arid and semi-arid environments and the alluvial and lacustrine aquifers in river deltas in humid environments, which are in neutral to weakly alkaline and strongly reducing environments.The content of As in groundwater varies widely, and As(Ⅲ) is the main form. The main mechanism of the formation of high-As groundwater in China is the reduced dissolution of Fe and Mn oxides under the action of organic matter and primary microorganisms, alkaline environment, intense evaporation and concentration, long-term water-rock interaction, and slow groundwater velocity, which promote the continuous migration and enrichment of As in groundwater. There are obvious differences in the toxicity of different forms of As. The toxic of As(Ⅲ) is far more than As(V), which is considered to be more toxic than methyl arsenate(MMA) and dimethyl arsenate(DMA). Inorganic As entering the body is metabolized through a combination of methylation(detoxification) and reduction(activation) and catalyzed by a series of methyltransferases and reductases. At present, remediation methods for high-As groundwater mainly include ion exchange technology, membrane filtration technology, biological treatment technology, nanocomposite adsorption technology, electrochemical technology, and so on. All the above remediation methods still have certain limitations, and it is urgent to develop treatment materials and technical means with stronger As removal performance and sustainability. With the joint efforts of scientists and governments of various countries in the future, this worldwide problem of drinking-water As poisoning will be solved as soon as possible. This paper systematically summarizes and discusses the hot research results of natural high-As groundwater, which could provide a reference for the related research of high-As groundwater in China and even the world.展开更多
Based on the literature and experimental results, three kinds of soil amendments, namely rice biochar, hydroxyapatite and potassium dihydrogen phosphate(KH2PO4), and deeper ploughing were selected to evaluate the fiel...Based on the literature and experimental results, three kinds of soil amendments, namely rice biochar, hydroxyapatite and potassium dihydrogen phosphate(KH2PO4), and deeper ploughing were selected to evaluate the field application effect of soil amendments and agronomic measures on the remediation of Cd contamination in greenhouse vegetable fields. Cd-contaminated greenhouse screening was conducted from 2015 to 2017. In September 2017, comparative tests of eight treatments were performed, and a preferred test was performed in September 2018. The screening results of the contaminated areas indicated that the distribution of over-standard sites was uneven, and Cd content was significantly different. Over-standard rate of No.4 greenhouse was 83.33% and was the highest, and the average content of Cd in soil was 0.535 mg/kg. It was used as a comparative test greenhouse for eight treatments. No.1 greenhouse was selected as the preferred test greenhouse, with three over-standard plots having average Cd concentrations of 0.530, 0.568 and 0.792 mg/kg. The comparative test results showed that after 8 months of remediation, the content of available Cd in the treatment of hydroxyapatite+rice biochar+deeper ploughing(T6) was reduced by 32.55% compared with CK(the control) and 24.96% than 2 months of remediation. The content of available Cd using the treatment of potassium dihydrogen phosphate+rice biochar+deeper ploughing(T7) decreased by 47.88% compared with CK and 31.00% than 2 months of remediation. The preferred remediation test results showed that in the treatment of hydroxyapatite+rice biochar+deeper ploughing: the mean Cd content decreased from 0.489 to 0.372 mg/kg, reducing by 23.86%, and the mean did not exceed the standard. Compared with CK, the mean content of available Cd decreased by 10.71% after 8 months, and the lowest content of available Cd in three treatments was 0.133 mg/kg. In addition, the Cd content, bioconcentration factor(BCF) and translocation coefficient(TF) of bean aboveground plants were decreased by 15.86%, 23.68% and 25.77%, respectively when compared with CK. Rice biochar+hydroxyapatite +deeper ploughing is a favoured technology for the remediation of Cd-contaminated greenhouse vegetable fields.展开更多
Firstly,this paper analyzes the cause of obstacles to continuous cropping of vegetables,and then introduces the soil ecological remediation technology used for overcoming obstacles to continuous cropping of vegetables...Firstly,this paper analyzes the cause of obstacles to continuous cropping of vegetables,and then introduces the soil ecological remediation technology used for overcoming obstacles to continuous cropping of vegetables. Finally,this paper analyzes the effect of applying soil ecological remediation technology in overcoming obstacles to continuous cropping of vegetables.展开更多
At present,the problem of heavy metal pollution in farmland in southern China is serious. Especially,the cadmium and lead are two heavy metal elements with serious pollution and great harm to human body. This paper re...At present,the problem of heavy metal pollution in farmland in southern China is serious. Especially,the cadmium and lead are two heavy metal elements with serious pollution and great harm to human body. This paper reviewed some common methods and materials used in the control of cadmium and lead pollution in farmland soil. Then,it discussed the problems in the repair of cadmium and lead pollution in farmland soil. It came up with the future research direction,to provide references for remediation of lead and cadmium pollution in farmland soil.展开更多
The characteristics and application of the in-situ remediation technology of groundwater,including air sparing,electro kinetic remediation,in-situ chemical oxidation,in-situ groundwater bioremediation and permeable re...The characteristics and application of the in-situ remediation technology of groundwater,including air sparing,electro kinetic remediation,in-situ chemical oxidation,in-situ groundwater bioremediation and permeable reactive barriers,were compared and evaluated.The results show that over 90%of展开更多
In order to study the groundwater environment in the Longkou plain,48 groups of water samples are collected,consisting of 7 groups of surface water samples and 41 groups of groundwater samples.The quality of groundwat...In order to study the groundwater environment in the Longkou plain,48 groups of water samples are collected,consisting of 7 groups of surface water samples and 41 groups of groundwater samples.The quality of groundwater in the Longkou Plain is poor,with class V water quality accounting for more than 90%,and no class I,II water quality,sporadic distribution of Class III and IV water quality.The influencing factors of water quality are mainly inorganic indicators such as nitrate,total hardness,chloride,salinity and sulfate,the detection rate of heavy metals is low.Nitrate is the main pollution index in this area,and the increase of nitrate content is closely related to the construction of underground reservoir.Based on the characteristics of groundwater pollution in the Longkou Plain,the in-situ chemical remediation of groundwater pollution is proposed.展开更多
The advantages and disadvantages of chemical leaching,phytoremediation,in-situ/ex-situ solidification and stabilization,cement kiln co-disposal and safe landfill remediation are analyzed.In addition,the application of...The advantages and disadvantages of chemical leaching,phytoremediation,in-situ/ex-situ solidification and stabilization,cement kiln co-disposal and safe landfill remediation are analyzed.In addition,the application of chemical leaching and in-situ/ex-situ solidification and stabilization technology in the treatment of heavy metal-contaminated soil in electroplating enterprises in China is introduced in detail to provide reference for the remediation of heavy metal-contaminated soil around electroplating enterprises in China.展开更多
This paper summarized the connotation of contaminated site remediation,the differences between contaminated site and brownfield,the differences between contaminated site and soil pollution and land pollution,clarified...This paper summarized the connotation of contaminated site remediation,the differences between contaminated site and brownfield,the differences between contaminated site and soil pollution and land pollution,clarified the relationship between the concepts,and introduced the remediation technology of contaminated site.展开更多
Soil, an important material basis for human activities, is an indispensable natural rasource that is difficult to regenerate. It is also an important part of human ecological environment. Currently, soil pollution has...Soil, an important material basis for human activities, is an indispensable natural rasource that is difficult to regenerate. It is also an important part of human ecological environment. Currently, soil pollution has affected China's agricultural production and threatened human health and ecological safety, so it has been paid more attention to by the people and has become a hot spot in environmental field. Through continuous research, a variety of soil remediation patents and technologies also emerge. Here, by retrieving the main words through the website (www. soopat. corn) and Chinese patent net, types of soil pollution and remediation technologies under the authorization status of the patents were analyzed, and the major species of soil pollutants and soil remediation technologies were reviewed.展开更多
The 2018 Joint International Congress of ILTS,ELITA and LICAGE were held in Lisbon,Portugal on May 23–26,2018.The exciting and innovative program brought together 1144 experts in liver transplantation(LT)such as surg...The 2018 Joint International Congress of ILTS,ELITA and LICAGE were held in Lisbon,Portugal on May 23–26,2018.The exciting and innovative program brought together 1144 experts in liver transplantation(LT)such as surgeons,physicians or basic scientists from 61 countries.The presentations included 110 invited speakers,181 oral presentations,and 545 posters.This editorial highlights some of the most innovative and impactful presentations in展开更多
It is generally known that soil pollution poses a terrible hazard to the environment, but the present techniques of contaminated soil remediation cannot control this growing threat. This paper compares the pollutant e...It is generally known that soil pollution poses a terrible hazard to the environment, but the present techniques of contaminated soil remediation cannot control this growing threat. This paper compares the pollutant extraction efficiency of traditional pumping and treating, which is a typical washing technology for the remediation of contaminated soils, with methods that utilize freeze-thaw cycles. In the soil freezing process, water shifts from unfrozen soils to the freezing front, and the permeability of soil will be enhanced under certain temperature gradients and water conditions. Therefore, this paper discusses the purification of contaminated soil through freeze-thaw action. We conducted a cleansing experiment on clay and silica sand infused with NaCl(simulation of heavy metals) and found that the efficiency of purification was enhanced remarkably in the latter by the freeze-thaw action. To assess the effective extraction of DNAPLs in soil, we conducted an experiment on suction by freezing, predicated on the different freezing points of moisture and pollutants. We found that the permeability coefficient was significantly increased by the freezing-thawing action, enabling the DNAPL contaminants to be extracted selectively and effectively.展开更多
Biosurfactants are biologically active metabolites, and the efficiency of direct screening of new biosurfactants from nature using traditional methods is low, which should be enhanced in the following studies by adopt...Biosurfactants are biologically active metabolites, and the efficiency of direct screening of new biosurfactants from nature using traditional methods is low, which should be enhanced in the following studies by adopting advanced biotechnologies. Rapid development and wide application of microbial culture independent methods, such as metagenomics, metatranscriptomics, metaproteomics and metabonomics, etc., contributes to quickly and precisely screening of novel biological surfactants. We mainly represented the current status of research and applications of biosurfactants in the remediation of petrochemical polluted environment, and also prospected avenues for future research.展开更多
With the continuous development of society,the development of agricultural economy is also accelerating.Meanwhile,a large amount of sludge and waste materials enter the farmland system,and the state of soil heavy meta...With the continuous development of society,the development of agricultural economy is also accelerating.Meanwhile,a large amount of sludge and waste materials enter the farmland system,and the state of soil heavy metal pollution is becoming more and more serious.In order to ensure food security and the health of people’s lives,a large number of experts and scholars have begun to look for remediation methods for heavy metal contaminated soil.At present,the use of mineral passivators in the remediation technology of heavy metal contaminated soil is a new and healthy recovery method,and has received extensive attention.展开更多
基金funded by the National Natural Science Foundation of China(41907175)the Open Fund of Key Laboratory(WSRCR-2023-01)the project of the China Geological Survey(DD20230459).
文摘Groundwater is an important source of drinking water.Groundwater pollution severely endangers drinking water safety and sustainable social development.In the case of groundwater pollution,the top priority is to identify pollution sources,and accurate information on pollution sources is the premise of efficient remediation.Then,an appropriate pollution remediation scheme should be developed according to information on pollution sources,site conditions,and economic costs.The methods for identifying pollution sources mainly include geophysical exploration,geochemistry,isotopic tracing,and numerical modeling.Among these identification methods,only the numerical modeling can recognize various information on pollution sources,while other methods can only identify a certain aspect of pollution sources.The remediation technologies of groundwater can be divided into in-situ and ex-situ remediation technologies according to the remediation location.The in-situ remediation technologies enjoy low costs and a wide remediation range,but their remediation performance is prone to be affected by environmental conditions and cause secondary pollution.The ex-situ remediation technologies boast high remediation efficiency,high processing capacity,and high treatment concentration but suffer high costs.Different methods for pollution source identification and remediation technologies are applicable to different conditions.To achieve the expected identification and remediation results,it is feasible to combine several methods and technologies according to the actual hydrogeological conditions of contaminated sites and the nature of pollutants.Additionally,detailed knowledge about the hydrogeological conditions and stratigraphic structure of the contaminated site is the basis of all work regardless of the adopted identification methods or remediation technologies.
基金The study was funded by the National Natural Science Foundation of China(41672225 and 41902243)the Natural Science Foundation of Jiangxi Province(20202BABL211018)the East China University of Technology Research Foundation for Advanced Talents(DHBK2019098).
文摘Groundwater with high arsenic(As) content seriously threatens human life and health. Drinking high-As groundwater for a long time will lead to various pathological changes such as skin cancer, liver cancer,and kidney cancer. High-As groundwater has become one of the most serious environmental geological problems in China and even internationally. This paper aims to systematically summarize the sources,migration, distribution, toxicological effects, and treatment techniques of As in natural groundwater in China based on a large number of literature surveys. High-As groundwater in China is mainly distributed in the inland basins in arid and semi-arid environments and the alluvial and lacustrine aquifers in river deltas in humid environments, which are in neutral to weakly alkaline and strongly reducing environments.The content of As in groundwater varies widely, and As(Ⅲ) is the main form. The main mechanism of the formation of high-As groundwater in China is the reduced dissolution of Fe and Mn oxides under the action of organic matter and primary microorganisms, alkaline environment, intense evaporation and concentration, long-term water-rock interaction, and slow groundwater velocity, which promote the continuous migration and enrichment of As in groundwater. There are obvious differences in the toxicity of different forms of As. The toxic of As(Ⅲ) is far more than As(V), which is considered to be more toxic than methyl arsenate(MMA) and dimethyl arsenate(DMA). Inorganic As entering the body is metabolized through a combination of methylation(detoxification) and reduction(activation) and catalyzed by a series of methyltransferases and reductases. At present, remediation methods for high-As groundwater mainly include ion exchange technology, membrane filtration technology, biological treatment technology, nanocomposite adsorption technology, electrochemical technology, and so on. All the above remediation methods still have certain limitations, and it is urgent to develop treatment materials and technical means with stronger As removal performance and sustainability. With the joint efforts of scientists and governments of various countries in the future, this worldwide problem of drinking-water As poisoning will be solved as soon as possible. This paper systematically summarizes and discusses the hot research results of natural high-As groundwater, which could provide a reference for the related research of high-As groundwater in China and even the world.
基金Supported by the Beijing-Tianjin-Hebei Collaborative Innovation Community Construction Project (19244010D)Technology Model and Application of Biological Obstacle Reduction and Healthy Soil Cultivation in Wheat and Corn Cropping Area of North China (2022YFD1901300)+1 种基金the National Key R&D Program of China (2016YFD0801003)the Talent Training Project in Hebei Province (A201803030)。
文摘Based on the literature and experimental results, three kinds of soil amendments, namely rice biochar, hydroxyapatite and potassium dihydrogen phosphate(KH2PO4), and deeper ploughing were selected to evaluate the field application effect of soil amendments and agronomic measures on the remediation of Cd contamination in greenhouse vegetable fields. Cd-contaminated greenhouse screening was conducted from 2015 to 2017. In September 2017, comparative tests of eight treatments were performed, and a preferred test was performed in September 2018. The screening results of the contaminated areas indicated that the distribution of over-standard sites was uneven, and Cd content was significantly different. Over-standard rate of No.4 greenhouse was 83.33% and was the highest, and the average content of Cd in soil was 0.535 mg/kg. It was used as a comparative test greenhouse for eight treatments. No.1 greenhouse was selected as the preferred test greenhouse, with three over-standard plots having average Cd concentrations of 0.530, 0.568 and 0.792 mg/kg. The comparative test results showed that after 8 months of remediation, the content of available Cd in the treatment of hydroxyapatite+rice biochar+deeper ploughing(T6) was reduced by 32.55% compared with CK(the control) and 24.96% than 2 months of remediation. The content of available Cd using the treatment of potassium dihydrogen phosphate+rice biochar+deeper ploughing(T7) decreased by 47.88% compared with CK and 31.00% than 2 months of remediation. The preferred remediation test results showed that in the treatment of hydroxyapatite+rice biochar+deeper ploughing: the mean Cd content decreased from 0.489 to 0.372 mg/kg, reducing by 23.86%, and the mean did not exceed the standard. Compared with CK, the mean content of available Cd decreased by 10.71% after 8 months, and the lowest content of available Cd in three treatments was 0.133 mg/kg. In addition, the Cd content, bioconcentration factor(BCF) and translocation coefficient(TF) of bean aboveground plants were decreased by 15.86%, 23.68% and 25.77%, respectively when compared with CK. Rice biochar+hydroxyapatite +deeper ploughing is a favoured technology for the remediation of Cd-contaminated greenhouse vegetable fields.
基金Supported by Independent Agricultural Innovation Foundation in Jiangsu Province(CX151044)
文摘Firstly,this paper analyzes the cause of obstacles to continuous cropping of vegetables,and then introduces the soil ecological remediation technology used for overcoming obstacles to continuous cropping of vegetables. Finally,this paper analyzes the effect of applying soil ecological remediation technology in overcoming obstacles to continuous cropping of vegetables.
基金Supported by National Key Research and Development Program(2016YED0800705-01)Key Research and Development Program of Guangxi(AB16380084+2 种基金AB16380164)Scientific Research and Technological Development Program Project of Nanning City(20162105)Scientific Development Fund Project of Guangxi Academy of Agricultural Sciences(2017JM06)
文摘At present,the problem of heavy metal pollution in farmland in southern China is serious. Especially,the cadmium and lead are two heavy metal elements with serious pollution and great harm to human body. This paper reviewed some common methods and materials used in the control of cadmium and lead pollution in farmland soil. Then,it discussed the problems in the repair of cadmium and lead pollution in farmland soil. It came up with the future research direction,to provide references for remediation of lead and cadmium pollution in farmland soil.
文摘The characteristics and application of the in-situ remediation technology of groundwater,including air sparing,electro kinetic remediation,in-situ chemical oxidation,in-situ groundwater bioremediation and permeable reactive barriers,were compared and evaluated.The results show that over 90%of
文摘In order to study the groundwater environment in the Longkou plain,48 groups of water samples are collected,consisting of 7 groups of surface water samples and 41 groups of groundwater samples.The quality of groundwater in the Longkou Plain is poor,with class V water quality accounting for more than 90%,and no class I,II water quality,sporadic distribution of Class III and IV water quality.The influencing factors of water quality are mainly inorganic indicators such as nitrate,total hardness,chloride,salinity and sulfate,the detection rate of heavy metals is low.Nitrate is the main pollution index in this area,and the increase of nitrate content is closely related to the construction of underground reservoir.Based on the characteristics of groundwater pollution in the Longkou Plain,the in-situ chemical remediation of groundwater pollution is proposed.
文摘The advantages and disadvantages of chemical leaching,phytoremediation,in-situ/ex-situ solidification and stabilization,cement kiln co-disposal and safe landfill remediation are analyzed.In addition,the application of chemical leaching and in-situ/ex-situ solidification and stabilization technology in the treatment of heavy metal-contaminated soil in electroplating enterprises in China is introduced in detail to provide reference for the remediation of heavy metal-contaminated soil around electroplating enterprises in China.
基金the Technology Innovation Leading Program of Shaanxi Province(2021CGBX-03).
文摘This paper summarized the connotation of contaminated site remediation,the differences between contaminated site and brownfield,the differences between contaminated site and soil pollution and land pollution,clarified the relationship between the concepts,and introduced the remediation technology of contaminated site.
基金Supported by the National Natural Science Foundation(41271328)
文摘Soil, an important material basis for human activities, is an indispensable natural rasource that is difficult to regenerate. It is also an important part of human ecological environment. Currently, soil pollution has affected China's agricultural production and threatened human health and ecological safety, so it has been paid more attention to by the people and has become a hot spot in environmental field. Through continuous research, a variety of soil remediation patents and technologies also emerge. Here, by retrieving the main words through the website (www. soopat. corn) and Chinese patent net, types of soil pollution and remediation technologies under the authorization status of the patents were analyzed, and the major species of soil pollutants and soil remediation technologies were reviewed.
基金supported by grants from China Postdoctoral Science Foundation(2017M610374)National Natural Science Foundation of China(81470891)+2 种基金Science and Technology Bureau of Zhejiang Province,China(2016C33145)Innovative Research Groups of the National Natural Science Foundation of China(81421062)the Fundamental Research Funds for the Central Universities(2018FZA7003)
文摘The 2018 Joint International Congress of ILTS,ELITA and LICAGE were held in Lisbon,Portugal on May 23–26,2018.The exciting and innovative program brought together 1144 experts in liver transplantation(LT)such as surgeons,physicians or basic scientists from 61 countries.The presentations included 110 invited speakers,181 oral presentations,and 545 posters.This editorial highlights some of the most innovative and impactful presentations in
基金supported by the National Natural Science Foundation of China (No. 41371092)the Scientific Research Foundation for Returned Overseas Students+1 种基金the Education Department of Henan Province Science and Technology Research projects (No.14B170007)the doctoral foundation of Henan Polytechnic University (No. 648349)
文摘It is generally known that soil pollution poses a terrible hazard to the environment, but the present techniques of contaminated soil remediation cannot control this growing threat. This paper compares the pollutant extraction efficiency of traditional pumping and treating, which is a typical washing technology for the remediation of contaminated soils, with methods that utilize freeze-thaw cycles. In the soil freezing process, water shifts from unfrozen soils to the freezing front, and the permeability of soil will be enhanced under certain temperature gradients and water conditions. Therefore, this paper discusses the purification of contaminated soil through freeze-thaw action. We conducted a cleansing experiment on clay and silica sand infused with NaCl(simulation of heavy metals) and found that the efficiency of purification was enhanced remarkably in the latter by the freeze-thaw action. To assess the effective extraction of DNAPLs in soil, we conducted an experiment on suction by freezing, predicated on the different freezing points of moisture and pollutants. We found that the permeability coefficient was significantly increased by the freezing-thawing action, enabling the DNAPL contaminants to be extracted selectively and effectively.
文摘Biosurfactants are biologically active metabolites, and the efficiency of direct screening of new biosurfactants from nature using traditional methods is low, which should be enhanced in the following studies by adopting advanced biotechnologies. Rapid development and wide application of microbial culture independent methods, such as metagenomics, metatranscriptomics, metaproteomics and metabonomics, etc., contributes to quickly and precisely screening of novel biological surfactants. We mainly represented the current status of research and applications of biosurfactants in the remediation of petrochemical polluted environment, and also prospected avenues for future research.
基金Shaanxi Provincial Land Engineering Construction Group Internal Project(DJNY2019-21)。
文摘With the continuous development of society,the development of agricultural economy is also accelerating.Meanwhile,a large amount of sludge and waste materials enter the farmland system,and the state of soil heavy metal pollution is becoming more and more serious.In order to ensure food security and the health of people’s lives,a large number of experts and scholars have begun to look for remediation methods for heavy metal contaminated soil.At present,the use of mineral passivators in the remediation technology of heavy metal contaminated soil is a new and healthy recovery method,and has received extensive attention.