期刊文献+
共找到2,164篇文章
< 1 2 109 >
每页显示 20 50 100
Anode surface engineering of zinc-ion batteries using tellurium nanobelt as a protective layer for enhancing energy storage performance
1
作者 Soobeom Lee Yeonjin Je +7 位作者 Boeun Seok Hyun Tae Kim Yong-Ryun Jo Soong Ju Oh Byoungyong Im Dae Guen Kim Sang-Soo Chee Geon-Hyoung An 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第5期113-123,共11页
Over the years,zinc-ion batteries(ZIBs)have attracted attention as a promising next-generation energy storage technology because of their excellent safety,long cycling performance,eco-friendliness,and high-power densi... Over the years,zinc-ion batteries(ZIBs)have attracted attention as a promising next-generation energy storage technology because of their excellent safety,long cycling performance,eco-friendliness,and high-power density.However,issues,such as the corrosion and dissolution of the Zn anode,limited wet-tability,and lack of sufficient nucleation sites for Zn plating,have limited their practical application.The introduction of a protective layer comprising of tellurium(Te)nanobelts onto the surface of Zn anode has emerged as a promising approach to overcome these limitations and improve the electrochemical behav-ior by enhancing the safety and wettability of ZIBs,as well as providing numerous nucleation sites for Zn plating.In the presence of a Te-based protective layer,the energy power density of the surface-engineered Zn anode improved significantly(ranging from 310 to 144 W h kg^(-1),over a power density range of 270 to 1,800 W kg^(-1)),and the lifespan capability was extended.These results demonstrate that the proposed strategy of employing Te nanobelts as a protective layer holds great promise for enhancing the energy storage performance of zIBs,making them even more attractive as a viable energy storage solution forthefuture. 展开更多
关键词 Zn ion battery ANODE protective layer TELLURIUM NANOBELT
下载PDF
Engineering hydrophobic protective layers on zinc anodes for enhanced performance in aqueous zinc-ion batteries
2
作者 Taofeng Li Suxia Yan +12 位作者 Hongyu Dong Yang Zheng Kun Ming Ying Chen Haitao Li Guochun Li Zhixia He Weimin Li Quan Wang Xiaohui Song Junfeng Liu Edison Huixiang Ang Yong Wang 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第10期1-11,I0001,共12页
Aqueous zinc-ion batteries possess substantial potential for energy storage applications;however,they are hampered by challenges such as dendrite formation and uncontrolled side reactions occurring at the zinc anode.I... Aqueous zinc-ion batteries possess substantial potential for energy storage applications;however,they are hampered by challenges such as dendrite formation and uncontrolled side reactions occurring at the zinc anode.In our investigation,we sought to mitigate these issues through the utilization of in situ zinc complex formation reactions to engineer hydrophobic protective layers on the zinc anode surface.These robust interfacial layers serve as effective barriers,isolating the zinc anode from the electrolyte and active water molecules and thereby preventing hydrogen evolution and the generation of undesirable byproducts.Additionally,the presence of numerous zincophilic sites within these protective layers facilitates uniform zinc deposition while concurrently inhibiting dendrite growth.Through comprehensive evaluation of functional anodes featuring diverse functional groups and alkyl chain lengths,we meticulously scrutinized the underlying mechanisms influencing performance variations.This analysis involved precise modulation of interfacial hydrophobicity,rapid Zn^(2+)ion transport,and ordered deposition of Zn^(2+)ions.Notably,the optimized anode,fabricated with octadecylphosphate(OPA),demonstrated exceptional performance characteristics.The Zn//Zn symmetric cell exhibited remarkable longevity,exceeding 4000 h under a current density of 2 mA cm^(-2)and a capacity density of 2 mA h cm^(-2),Furthermore,when integrated with a VOH cathode,the complete cell exhibited superior capacity retention compared to anodes modified with alternative organic molecules. 展开更多
关键词 Aqueous zinc-ion batteries Hydrophobic protective layers Zinc anode stability Dendrite growth inhibition Energy storage
下载PDF
Dual-function protective layer for highly reversible Zn anode
3
作者 Jiaming Li Hanhao Liang +6 位作者 Yini Long Xiao Yu Jiaqi Li Nan Li Junyi Han Jianglin Wang Zhanhong Yang 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第11期12-23,共12页
The thermodynamic instability of zinc anodes in aqueous electrolytes leads to issues such as corrosion,hydrogen evolution reactions(HER), and dendrite growth, severely hindering the practical application of zinc-based... The thermodynamic instability of zinc anodes in aqueous electrolytes leads to issues such as corrosion,hydrogen evolution reactions(HER), and dendrite growth, severely hindering the practical application of zinc-based aqueous energy storage devices. To address these challenges, this work proposes a dualfunction zinc anode protective layer, composed of Zn-Al-In layered double oxides(ILDO) by rationally designing Zn-Al layered double hydroxides(Zn-Al LDHs) for the first time. Differing from previous works on the LDHs coatings, firstly, the ILDO layer accelerates zinc-ion desolvation and also captures and anchors SO_(4)^(2-). Secondly, the in-situ formation of the Zn-In alloy phase effectively lowers the nucleation energy barrier, thereby regulating zinc nucleation. Consequently, the zinc anode with the ILDO protective layer demonstrates long-term stability exceeding 1900 h and low voltage hysteresis of 7.5 m V at 0.5 m A cm^(-2) and 0.5 m A h cm^(-2). Additionally, it significantly enhances the rate capability and cycling performance of Zn@ILDO//MnO_(2) full batteries and Zn@ILDO//activated carbon zinc-ion hybrid capacitors.This simple and effective dual-function protective layer strategy offers a promising approach for achieving high-performance zinc-ion batteries. 展开更多
关键词 protection layer Zn-Al-In layered double oxide Captures and anchors SO_(4)^(2-) Zn-In alloy phase Zn metal anode
下载PDF
Formation mechanism of the protective layer in a blast furnace hearth 被引量:9
4
作者 Ke-xin Jiao Jian-liang Zhang +2 位作者 Zheng-jian Liu Meng Xu Feng Liu 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2015年第10期1017-1024,共8页
A variety of techniques, such as chemical analysis, scanning electron microscopy-energy dispersive spectroscopy, and X-ray diffraction, were applied to characterize the adhesion protective layer formed below the blast... A variety of techniques, such as chemical analysis, scanning electron microscopy-energy dispersive spectroscopy, and X-ray diffraction, were applied to characterize the adhesion protective layer formed below the blast furnace taphole level when a certain amount of titanium-bearing burden was used. Samples of the protective layer were extracted to identify the chemical composition, phase assemblage, andistribution. Furthermore, the formation mechanism of the protective layer was determined after clarifying the source of each componenFinally, a technical strategy was proposed for achieving a stable protective layer in the hearth. The results show that the protective layemainly exists in a bilayer form in the sidewall, namely, a titanium-bearing layer and a graphite layer. Both the layers contain the slag phaswhose major crystalline phase is magnesium melilite(Ca2Mg Si2O7) and the main source of the slag phase is coke ash. It is clearly determinethat solid particles such as graphite, Ti(C,N) and Mg Al2O4play an important role in the formation of the protective layer, and the key factofor promoting the formation of a stable protective layer is reasonable control of the evolution behavior of coke. 展开更多
关键词 blast furnaces HEARTHS protective layers electroch
下载PDF
Formation mechanism of the graphite-rich protective layer in blast furnace hearths 被引量:3
5
作者 Ke-xin Jiao Jian-liang Zhang +2 位作者 Zheng-jian Liu Feng Liu Li-sheng Liang 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2016年第1期16-24,共9页
A long campaign life of blast furnaces is heavily linked to the existence of a protective layer in their hearths. In this work, we conducted dissection studies and investigated damage in blast furnace hearths to estim... A long campaign life of blast furnaces is heavily linked to the existence of a protective layer in their hearths. In this work, we conducted dissection studies and investigated damage in blast furnace hearths to estimate the formation mechanism of the protective layer. The results illustrate that a significant amount of graphite phase was trapped within the hearth protective layer. Furthermore, on the basis of the thermodynamic and kinetic calculations of the graphite precipitation process, a precipitation potential index related to the formation of the graphite-rich protective layer was proposed to characterize the formation ability of this layer. We determined that, under normal operating conditions, the precipitation of graphite phase ~om hot metal was thermodynamically possible. Among elements that exist in hot metal, C, Si, and P favor graphite precipitation, whereas Mn and Cr inhibit this process. Moreover, at the same hot-face temperature, an increase of carbon concentration in hot metal can shorten the precipitation time. Finally, the results suggest that measures such as reducing the hot-face tem- perature and increasing the degree of carbon saturation in hot metal are critically important to improve the precipitation potential index. 展开更多
关键词 blast furnaces HEARTHS GRAPHITE protective layers formation mechanisms
下载PDF
Numerical simulation of protection range in exploiting the upper protective layer with a bow pseudo-incline technique 被引量:15
6
作者 HU Guo-zhong WANG Hong-tu LI Xiao-hong FAN Xiao-gang YUAN Zhi-gang 《Mining Science and Technology》 EI CAS 2009年第1期58-64,共7页
The developing processes of stress and deformation fields of a protected layer after mining an upper-protective layer with a bow pseudo-incline technique were simulated to locate the protection region. The pressure re... The developing processes of stress and deformation fields of a protected layer after mining an upper-protective layer with a bow pseudo-incline technique were simulated to locate the protection region. The pressure relief of the protected layer was analyzed after mining the upper-protective layer. The pressure relief angle along the strike and incline were located according to the roles of protection of the deformation and stress pressure-relief of the protective layer after mining. This results show that the upper-protective layer with the bow pseudo-incline technique have an upper and downside pressure relief angle of 85 and 68 degrees respectively; the distribution of strike pressure relief angles along the pseudo-incline working face is uneven and their values range from 38.3 to 51 degrees. The pressure relief angle of the inclined middle location was the largest. The distribution of the protection region of the upper-protective layer with the bow pseudo-incline teelmique located by practical tests and numerical simulation is essentially consistent, compared with the results obtained by these methods. 展开更多
关键词 bow pseudo-incline technique upper-protective layer protection region 3D numerical simulation
下载PDF
A two-dimension laminar composite protective layer for dendrite-free lithium metal anode 被引量:3
7
作者 Xiang-Qun Xu Rui Xu +4 位作者 Xin-Bing Cheng Ye Xiao Hong-Jie Peng Hong Yuan Fangyang Liu 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2021年第5期391-394,共4页
Lithium(Li)metal anodes with the high theoretical specific capacity(3860 mAh g^(-1))and most negative reduction potential(-3.04 V vs.standard hydrogen electrode)have been considered as an ultimate choice for energy st... Lithium(Li)metal anodes with the high theoretical specific capacity(3860 mAh g^(-1))and most negative reduction potential(-3.04 V vs.standard hydrogen electrode)have been considered as an ultimate choice for energy storage devices with high energy density[1-4].However,the practical applications of Li metalbased batteries(LMBs)are confronted with two tough issues:Li dendrite growth induced by uneven Li depositions and unstable solid electrolyte interphase(SEI)(Fig.1a)[5,6]. 展开更多
关键词 Lithium metal anode Artificial protective layer 2D materials Vermiculite sheets Laminar arrangement
下载PDF
Engineering of carbon and other protective coating layers for stabilizing silicon anode materials 被引量:6
8
作者 Fenglin Wang Gen Chen +2 位作者 Ning Zhang Xiaohe Liu Renzhi Ma 《Carbon Energy》 CAS 2019年第2期219-245,共27页
Silicon(Si)has been attracting extensive attention for rechargeable lithium(Li)‐ion batteries due to its high theoretical capacity and low potential vs Li/Li+.However,it remains challenging and problematic to stabili... Silicon(Si)has been attracting extensive attention for rechargeable lithium(Li)‐ion batteries due to its high theoretical capacity and low potential vs Li/Li+.However,it remains challenging and problematic to stabilize the Si materials during electrochemical cycling because of the huge volume expansion,which results in losing electric contact and pulverization of Si particles.Consequently,the Si anode materials generally suffer from poor cycling,poor rate performance,and low coulomb efficiency,preventing them from practical applications.Up‐to‐date,there are numerous reports on the engineering of Si anode materials at microscale and nanoscale with significantly improved electrochemical performances.In this review,we will concentrate on various precisely designed protective layers for silicon‐based materials,including carbon layers,inorganic layers,and conductive polymer protective layer.First,we briefly introduced the alloying and failure mechanism of Si as anode materials upon electrochemical reactions.Following that,representative cases have been introduced and summarized to illustrate the purpose and advancement of protective coating layers,for instance,to alleviate pulverization and improve conductivity caused by volume expansion of Si particles during charge/discharge process,and maintain the surface stability of Si particles to form a stable solid‐electrolyte interphase layer.At last,possible strategies on the protective coating layer for stabilizing silicon anode materials that can be applied in the future have been indicated. 展开更多
关键词 SILICON CARBON protective layer lithium storage
下载PDF
What If the Protection against Oxidation of Chromia-Forming Alloys Was Not Always Due to the Chromia Layer?
9
作者 Boris Contri Stéphane Valette +1 位作者 Marina Soustre Pierre Lefort 《American Journal of Analytical Chemistry》 CAS 2024年第9期286-302,共17页
Chromia-forming alloys have good resistance to oxidizing agents such as O2, CO2, … It is accepted that the protection of these alloys is always due to the chromia layer formed at the surface of the alloys, which acts... Chromia-forming alloys have good resistance to oxidizing agents such as O2, CO2, … It is accepted that the protection of these alloys is always due to the chromia layer formed at the surface of the alloys, which acts as a barrier between the oxidizing gases and the alloy substrates, forming a diffusion zone that limits the overall reaction rate and leads to parabolic kinetics. But this was not verified in the study devoted to Inconel®625 the oxidation in CO2 that was followed by TGA, with characterizations by XRD, EDS and FIB microscopy. Contrary to what was expected and accepted in similar studies on other chromia-forming alloys, it was shown that the diffusion step that governs the overall reaction rate is not located inside the chromia layer but inside the alloy, precisely inside a zone just beneath the interface alloy/chromia, this zone being depleted in chromium. The chromia layer, therefore, plays no kinetic role and does not directly protect the underlying alloy. This result was demonstrated using a simple test that consisted in removing the chromia layer from the surface of samples partially oxidized and then to continue the thermal treatment: insofar as the kinetics continued without any change in rate, this proved that this surface layer of oxide did not protect the substrate. Based on previous work on many chromia-forming alloys, the possibility of a similar reaction mechanism is discussed. If the chromia layer is not the source of protection for a number of chromia-forming alloys, as is suspected, this might have major consequences in terms of industrial applications. 展开更多
关键词 Chromia-Forming Alloys Chromia layer Oxidation protection Inconel®625 Kinetics
下载PDF
Experimental research on methane control of mining upper protective layers 被引量:2
10
作者 Luo Yong 《Engineering Sciences》 EI 2009年第3期41-46,共6页
In order to solve coal and gas outbursts during mining coal seam,studying on related problems were carried out. According to the theories of mining upper protective layer,proper mining plan were designed and performed... In order to solve coal and gas outbursts during mining coal seam,studying on related problems were carried out. According to the theories of mining upper protective layer,proper mining plan were designed and performed through field experiment. By means of examining several parameters obtained from the field experiment,the protective effects were evaluated and the protective scope and related parameters were determined. The results of field experiment show that the danger of outbursts was evidently eliminated and the method of mining protective layers is effective and the safety and economic benefits are remarkable. The research has really applied worth and will give beneficial references to mining area with analogous conditions. 展开更多
关键词 methane control protective layer coal and gas outburst field experiment
下载PDF
Structure and Properties of Polytetrafluorethylene and Polyurethane Layered Membrane for Protective Clothing 被引量:1
11
作者 黄机质 张建春 高卫东) 《Journal of Donghua University(English Edition)》 EI CAS 2006年第1期49-52,共4页
This paper presents a new idea for intensifying protective and stretch recovery properties of micro porous polytetrafluorethylene and hydrophilic polyurethane (PTFE/PU) layered membrane through a co-stretching process... This paper presents a new idea for intensifying protective and stretch recovery properties of micro porous polytetrafluorethylene and hydrophilic polyurethane (PTFE/PU) layered membrane through a co-stretching process. The structure and properties of co-stretching PTFE/PU layered membrane and coated PTFE/PU layered membrane by means of directly coating the PU on the PTFE membrane were investigated using Electron Microscope, Universal Materials Testing Machine, and the water vapor permeability (WVP) was measured according to absorption method of water vapor of GB/T 12704-91. Contrasted to PU coating process, the PU membrane on the co-stretching PTFE/PU membrane is nonporous because of heat treatment process, which can prevent the SARS virus from permeating the Co-stretching PTFE/PU membrane. The stretch and recovery properties of the Co-stretching PTFE/PU membrane is at least 66% after being stretched to 50% of its original length in transverse directions and that of the coated PTFE/PU membrane is 52%. The WVP of the Co-stretching PTFE/PU membrane is 13 523 g/24 h·m^2. The results suggest that when Co-stretching PTFE/PU membrane is laminated to a stretchable fabric, the fabric would have excellent stretch and recovery properties while waterproof and being permeable to water vapor. So, the Co-stretching PTFE/PU membrane laminated fabric will be a comfortable protective clothing material. 展开更多
关键词 protective clothing pol ytetra fluoreth ylene layered membrane polyurethane.
下载PDF
Determination of protection range of mining upper protective layers and its numerical simulation 被引量:1
12
作者 SONG Zhi-min GAO Xin-chun TIAN Kun-yun 《Journal of Coal Science & Engineering(China)》 2012年第4期368-373,共6页
Aiming at the limitation of the traditional method for determination of protection region, combined with the actual situation of a mine, a new method for determination of protection region was put forward (including ... Aiming at the limitation of the traditional method for determination of protection region, combined with the actual situation of a mine, a new method for determination of protection region was put forward (including the protection of working face layout and development direction), that is, gas flow observation analysis on the spot and gas content contrast method. The protection region was determined by gas flow observation analysis, gas content contrast, and computer numerical simulation combined with engineering practice. In the process of gas content test, the fixed sampling method "big hole drill reaming, small orifice drill rod connected with core tube" was employed. The results show that the determined protection region is in accordance with the actual site situation. The fixed sampling method ensures the accuracy of gas measurement of gas content. 展开更多
关键词 protective layer protection region numerical simulation fixed point sampling
下载PDF
Numerical simulation on pressure-relief deformation characteristics of underlying coal-rock mass after upper protective layer excavation 被引量:1
13
作者 Jian LIU Jie ZHAO Ming-Song GAO 《Journal of Coal Science & Engineering(China)》 2013年第3期276-281,共6页
Based on the occurrence features of Group B coal-seams at a coal mine in the Huainan coal mining area, the elasto-plastic mechanical damage constitutive functions and numerical model for the protective layer excavatio... Based on the occurrence features of Group B coal-seams at a coal mine in the Huainan coal mining area, the elasto-plastic mechanical damage constitutive functions and numerical model for the protective layer excavation were established. With the UDEC2D computer program, after the upper protective layer was mined, the stress field change trends, crack development, and expansion deformation trends of underlying coal rock seams in the floor of the working face were simulated and analyzed. The simulation results show the stress changes in coal rock seams, the evolution process of pre-cracks during the process of upper protective layer mining, the caved zone and fractured zone of the underlying coal rock seams. At the same time, the results from the actual investigation and analysis of protected layer deformation match the simulation values, which verifies the validity and accuracy of numerical simulation results. The study results have an important guiding significance for gas management in low permeability and high gas coal seams with similar mining conditions. 展开更多
关键词 upper protective layer mining pressure-relief deformation underlying coal-rock mass fracture development
下载PDF
Effect of Phase Change Materials on the Thermal Protective Performance of the Multi-layered Fabrics Examined by TPP Tester under Flash Fire 被引量:1
14
作者 赵蒙蒙 李俊 《Journal of Donghua University(English Edition)》 EI CAS 2016年第1期150-154,共5页
Cotton fabrics treated with phase change materials( PCMs)were used in multi-layered fabrics of the fire fighter protective clothing to study its effect on thermal protection. The thermal protective performance( TPP) o... Cotton fabrics treated with phase change materials( PCMs)were used in multi-layered fabrics of the fire fighter protective clothing to study its effect on thermal protection. The thermal protective performance( TPP) of the multi-layered fabrics was measured by a TPP tester under flash fire. Results showed that the utilization of the PCM fabrics improved the thermal protective performance of the multi-layered fabrics. The fabric with a PCM add on of 41. 9% increased the thermal protection by 50. 6% and reduced the time to reach a second degree burn by 8. 4 s compared with the reference fabrics( without PCMs). The employment of the PCM fabrics also reduced the blackened areas on the inner layers. The PCM fabrics with higher PCM melting temperature could bring higher thermal protective performance. 展开更多
关键词 phase change material(PCM) multi-layered fabrics thermal protection performance(TPP) fire fighter protective clothing
下载PDF
Study on the countermeasures against methane outburst of mining multiple upper protective layers in coal seams cluster
15
作者 谢广祥 罗勇 《Journal of Coal Science & Engineering(China)》 2005年第1期31-35,共5页
In order to prevent coal and methane outbursts, mining protective layers is an effective means, yet no precedents of mining multiple protective layers is discoveried in seams which includes several seams are prone to ... In order to prevent coal and methane outbursts, mining protective layers is an effective means, yet no precedents of mining multiple protective layers is discoveried in seams which includes several seams are prone to outburst like Xinzhuangzi Mine. This paper perfected the related theories through analyzing mining multiple upper protective layers. By means of examining several parameters, it synthetically analyzed and ascer- tains the protected effectiveness and scope and reasonable parameters, finally obtained the specific indexes and effectiveness of mining multiple protective layers in coal seams cluster. 展开更多
关键词 coal seams cluster protective layer avoiding methane outburst protected effectiveness
下载PDF
An analysis on the effect of mining height and floor lithology on pressure relief of upper protective layers
16
作者 Xu-chao HUANG Dong-ling SUN Kang-wu FENG 《Journal of Coal Science & Engineering(China)》 2013年第1期46-50,共5页
In order to understand the effect of mining height and floor lithology at the upper protective layer face on the pressure relief of protected coal seams, this paper uses a numerical simulation method to model the pres... In order to understand the effect of mining height and floor lithology at the upper protective layer face on the pressure relief of protected coal seams, this paper uses a numerical simulation method to model the pressure changes at protected coal seam during mining upper protective layer. The results show that the taller the mining height at the upper protective layer face, the greater the protection on protected coal seam due to the higher level of pressure release; the upper protective layer face with hard rock floor impedes the pressure release at the protected coal seam, which affects the overall effect of the pressure release at protected coal seam using the protective layer mining method. 展开更多
关键词 mining height floor lithology mining upper protective layer pressure relief EFFECT
下载PDF
Reimagining the Visceral Protective Layer with Tailored Manipulation: A Case Report
17
作者 R. Dewayne Edwards Luis G. Fernandez +2 位作者 Sean O’Keefe Michelle Baribault Marc R. Matthews 《Surgical Science》 2022年第2期53-65,共13页
The visceral protective layer is a standard component of the ABTHERA<sup>TM</sup> systems for temporary abdominal closures. Nonetheless, there are circumstances where the standard, fenestrated visceral pro... The visceral protective layer is a standard component of the ABTHERA<sup>TM</sup> systems for temporary abdominal closures. Nonetheless, there are circumstances where the standard, fenestrated visceral protective layer is too large to be successfully applied into every patient’s open abdomen, such as within the abdomen of a child, smaller adult or a patient with previously placed ostomies or drains. The fenestrated, visceral protective layer may require alterations or tailoring for adequate deployment instead of placing the bulk of the visceral protective layer entirely into the open abdomen for temporary abdominal closure. This case report illustrates how the visceral protective layer can be adapted or “reimagined” to conform to a patient with unique or complex abdominal domain features when utilizing the ABTHERA<sup>TM</sup> device prior to facial closure or abdominal wall reconstruction. Photographs are utilized in a step-by-step fashion to aid the clinician in these detailed maneuvers. 展开更多
关键词 Open Abdomen Temporary Abdominal Closure Visceral protective layer Loss of Abdominal Domain
下载PDF
Layered Metal Composites: Newest Generation of Radiation-Protective Materials
18
作者 Vitalii Bilous Valerii Borysenko +5 位作者 Victor Voyevodin Sergii Didenko Mycola Ilchenko Olexander Rybka Olexander Kuznetsov Yurii Plisak 《Journal of Materials Science and Chemical Engineering》 2014年第8期6-11,共6页
The expediency of development of one of the newest highly effective radiation-protective materials—layered composites of “light metal/heavy metal” type is substantiated. The characteristics of the internal architec... The expediency of development of one of the newest highly effective radiation-protective materials—layered composites of “light metal/heavy metal” type is substantiated. The characteristics of the internal architecture of composites of Al/Pb type made by consecutive application of vacuum and normal atmospheric rolling are adduced. The differences between the radioisotope and accelerating techniques of experimental testing of radiation-protective properties of materials are described. The results of the testing of composites and the influence of their structure on radiation-protective properties of the investigated materials are characterized. It is shown that the radiation-protective efficiency of composites certain structures may be 30% - 40% higher than the aluminum. This gives the opportunity to reduce the weight of radiation-protective structure at preservation of effectiveness of protection at aluminum level, or to increase the effectiveness of protection at constant weight of this structure. 展开更多
关键词 Radiation-protective MATERIALS and Structures Al/Pb layerED COMPOSITES Methods and Test Results of Radiation-protective Properties Radiation-protective Efficiency
下载PDF
Boosting Zn||I_(2) Battery’s Performance by Coating a Zeolite‑Based Cation‑Exchange Protecting Layer 被引量:2
19
作者 Wenshuo Shang Qiang Li +7 位作者 Fuyi Jiang Bingkun Huang Jisheng Song Shan Yun Xuan Liu Hideo Kimura Jianjun Liu Litao Kang 《Nano-Micro Letters》 SCIE EI CAS CSCD 2022年第5期168-180,共13页
The intrinsically safe Zn||I_(2) battery,one of the leading candidates aiming to replace traditional Pb-acid batteries,is still seriously suffering from short shelf and cycling lifespan,due to the uncontrolled I_(3)^(... The intrinsically safe Zn||I_(2) battery,one of the leading candidates aiming to replace traditional Pb-acid batteries,is still seriously suffering from short shelf and cycling lifespan,due to the uncontrolled I_(3)^(−)-shuttling and dynamic parasitic reactions on Zn anodes.Considering the fact that almost all these detrimental processes terminate on the surfaces of Zn anodes,modifying Zn anodes’surface with protecting layers should be one of the most straightforward and thorough approaches to restrain these processes.Herein,a facile zeolite-based cation-exchange protecting layer is designed to comprehensively suppress the unfavored parasitic reactions on the Zn anodes.The negatively-charged cavities in the zeolite lattice provide highly accessible migration channels for Zn^(2+),while blocking anions and electrolyte from passing through.This low-cost cation-exchange protecting layer can simultaneously suppress self-discharge,anode corrosion/passivation,and Zn dendrite growth,awarding the Zn||I_(2) batteries with ultra-long cycle life(91.92%capacity retention after 5600 cycles at 2 A g^(−1)),high coulombic efficiencies(99.76%in average)and large capacity(203–196 mAh g^(−1) at 0.2 A g^(−1)).This work provides a highly affordable approach for the construction of high-performance Zn-I_(2) aqueous batteries. 展开更多
关键词 ZEOLITE protecting layer Zn-I_(2)aqueous battery SHUTTLE Parasitic reactions
下载PDF
Numerical calculation for gas and strata movement law caused by protection layer mining
20
作者 余伟健 WU Gen-shui +1 位作者 XIE Dong-hai ZHANG Jian 《Journal of Chongqing University》 CAS 2017年第4期152-163,共12页
According to the problem during mining coal seam with high gas and its control, the theory numerical calculation of gas and strata movement law caused by protection layer mining was studied, with the background of Sna... According to the problem during mining coal seam with high gas and its control, the theory numerical calculation of gas and strata movement law caused by protection layer mining was studied, with the background of Snake Mountain coal mine. First of all, the basic principle of fluid(gas)-solid coupling was briefly described, and a three dimensional model was established by FLAC software. Secondly, the calculation parameters of fluid-solid coupling were obtained based on the measured data, and the numerical calculation of sublevel mining was carried out in turn. Lastly, initial stress state, gas movement law, deformation law of pore pressure and movement characteristics of rock strata were studied, respectively. The results show that the gas and pressure were greatly reduced with the advance of 4 coal seam working surface, as well as the constant increase of area of goaf. Facilitating gas and the stress were gradually penetrated and released to goaf during the whole process of mining. The gas pressure, the aggregation degree and the surrounding rock pressure of the 1 coal seam and the 3 coal seam were greatly reduced. 展开更多
关键词 coal SEAM with high GAS protectION layer MINING GAS permeation STRATA movement
下载PDF
上一页 1 2 109 下一页 到第
使用帮助 返回顶部