After analyzing the working condition of the conventional diesel forklift,an energy recovery system in hybrid forklift is considered and its simulation model is built.Then,the control strategy for the proposed energy ...After analyzing the working condition of the conventional diesel forklift,an energy recovery system in hybrid forklift is considered and its simulation model is built.Then,the control strategy for the proposed energy recovery system is discussed,which is validated and evaluated by simulation.The simulation results show that the proposed control strategy can achieve balance of the power and keep the state of charge(SOC) of ultra capacitor in a reasonable range,and the fuel consumption can be reduced by about 20.8% compared with the conventional diesel forklift.Finally,the feasibility of the simulation results is experimentally verified based on the lifting energy recovery system.展开更多
The energy saving of hydraulic excavators is always an essential research.An energy recovery system can effectively recover the boom potential energy and rotational kinetic energy.Based on the standard working cycle o...The energy saving of hydraulic excavators is always an essential research.An energy recovery system can effectively recover the boom potential energy and rotational kinetic energy.Based on the standard working cycle of hydraulic excavators,a dynamic programming(DP)control strategy for hybrid hydraulic excavators was proposed to recover the boom potential energy and rotational kinetic energy.The hybrid hydraulic excavator simulation model was built by Simulink software.The simulation results indicated that the fuel consumption of hybrid hydraulic excavators using the DP control strategy was about 21.3%lower than that of the conventional hydraulic excavator.In order to experimentally verify the simulation results,an experimental platform for hybrid hydraulic excavators was built.The experimental results indicated that the fuel consumption of hybrid hydraulic excavators using the DP control strategy was about 18.9%lower than that of the conventional hydraulic excavator.This paper shows that the DP control strategy applied to hybrid hydraulic excavators can recycle the boom potential energy and rotational kinetic energy,and reduce the fuel consumption of hybrid hydraulic excavators.展开更多
基金Project(2013BAF07B02)supported by National Science and Technology Support Program of China
文摘After analyzing the working condition of the conventional diesel forklift,an energy recovery system in hybrid forklift is considered and its simulation model is built.Then,the control strategy for the proposed energy recovery system is discussed,which is validated and evaluated by simulation.The simulation results show that the proposed control strategy can achieve balance of the power and keep the state of charge(SOC) of ultra capacitor in a reasonable range,and the fuel consumption can be reduced by about 20.8% compared with the conventional diesel forklift.Finally,the feasibility of the simulation results is experimentally verified based on the lifting energy recovery system.
基金jointly sponsored by the National Key R&D Program of China(Grant No.2023YFC3010904)the National Key R&D Program of China(Grant No.2021YFC3002003)the Science and Technology Research and Major Achievement Transformation Project of Strategic Emerging Industries in Hunan Province(Grant No.2019GK4014).
文摘The energy saving of hydraulic excavators is always an essential research.An energy recovery system can effectively recover the boom potential energy and rotational kinetic energy.Based on the standard working cycle of hydraulic excavators,a dynamic programming(DP)control strategy for hybrid hydraulic excavators was proposed to recover the boom potential energy and rotational kinetic energy.The hybrid hydraulic excavator simulation model was built by Simulink software.The simulation results indicated that the fuel consumption of hybrid hydraulic excavators using the DP control strategy was about 21.3%lower than that of the conventional hydraulic excavator.In order to experimentally verify the simulation results,an experimental platform for hybrid hydraulic excavators was built.The experimental results indicated that the fuel consumption of hybrid hydraulic excavators using the DP control strategy was about 18.9%lower than that of the conventional hydraulic excavator.This paper shows that the DP control strategy applied to hybrid hydraulic excavators can recycle the boom potential energy and rotational kinetic energy,and reduce the fuel consumption of hybrid hydraulic excavators.