The efficiency and irreversibility defined based on the second law of thermodynamics provide a new path for heat exchangers design and make performance analysis more straightforward and elegant.The second law of therm...The efficiency and irreversibility defined based on the second law of thermodynamics provide a new path for heat exchangers design and make performance analysis more straightforward and elegant.The second law of thermodynamics is applied in a Straight Microchannel Printed Circuit heat exchanger to determine the thermal performance of different shapes of Boehmite Alumina compared to Al2O3 aluminum oxide.The various forms of non-spherical Boehmite Alumina are characterized dynamically and thermodynamically through dynamic viscosity and thermal conductivity,using empirical coefficients.The non-spherical shape includes platelet,cylindrical,blades,and bricks forms.Graphical results are presented for thermal efficiency,thermal irreversibility,heat transfer rate,and nanofluid exit temperature.The non-spherical shapes of Boehmite Alumina show different thermal characteristics concerning the spherical shape when there are variations in fluid flow rates and the nanoparticles fraction.Furthermore,it was theoretically demonstrated that non-spherical particles have higher heat transfer rates than spherical particles,emphasizing platelets and cylindrical shapes for the low volume fraction of nanoparticles and bricks and blades for high volume fraction.展开更多
This study investigated the effects of zigzag-flow channel bending angle in printed circuit heat exchangers(PCHEs) using a computational fluid dynamics method with ANSYS-FLUENT simulation.The three-dimensional model o...This study investigated the effects of zigzag-flow channel bending angle in printed circuit heat exchangers(PCHEs) using a computational fluid dynamics method with ANSYS-FLUENT simulation.The three-dimensional model of PCHE with a 15° curved,zigzag channel was conducted for preliminary validation.The comparisons between the CFD simulation results and the experimental data showed good agreement with some discrepancies in the heat transfer and pressure drop results.In addition,different bending angle configurations(0°,3° to 30°) of zigzag channels were analyzed to obtain better thermal-hydraulic performance of the zigzag channel PCHE under different inlet mass flow rates.The criteria of heat transfer and frictional factor were applied to evaluate the thermal-hydraulic performance of the PCHE.The results showed that the 6° and 9°bending channel provided good thermal-hydraulic performance.New correlations were developed using the 6°and 9° bending channel angles in PCHE designs to predict the Nusselt number and friction factor.展开更多
Printed circuit heat exchanger(PCHE)has been widely used in supercritical carbon dioxide(S-CO_(2))power systems because of its high heat transfer efficiency and good compactness.However,due to the large variety of PCH...Printed circuit heat exchanger(PCHE)has been widely used in supercritical carbon dioxide(S-CO_(2))power systems because of its high heat transfer efficiency and good compactness.However,due to the large variety of PCHE configurations,channel selection in practical applications lacks a basis.Therefore,this paper discussed the heat transfer and friction characteristics and the synergy of three fields in the channel under the guidance of the field synergy principle for four typical PCHE channels.Additionally,the comprehensive performance of four channels was compared.Finally,the heat transfer and friction factor correlations for S-CO_(2)in four channels were established.The findings demonstrate that the synergy of velocity and pressure fields of the straight channel PCHE is better(β≈180°),so its resistance loss is relatively small.The zigzag and sinusoidal wavy channels and the airfoil fins can reduce the angle a between the temperature gradient and velocity,thus enhancing the heat transfer.The sinusoidal wavy channel can reduce flow resistance compared to the zigzag channel due to the rounded corners.The streamlined airfoil structure can guide the flow and reduce backflow,thus reducing resistance losses.In the range of Re studied in this paper,the maximum error of the proposed heat transfer and friction factor correlations of PCHE is 7.0%,which shows good fitting accuracy.The research in this paper can provide a reference for the selection and design of PCHE with different channel configurations.展开更多
The printed circuit heat exchanger(PCHE) is receiving wide attention as a new kind of compact heat exchanger and is considered as a promising vaporizer in the LNG process. In this paper, a PCHE straight channel in the...The printed circuit heat exchanger(PCHE) is receiving wide attention as a new kind of compact heat exchanger and is considered as a promising vaporizer in the LNG process. In this paper, a PCHE straight channel in the length of 500 mm is established, with a semicircular cross section in a diameter of 1.2 mm.Numerical simulation is employed to investigate the flow and heat transfer performance of supercritical methane in the channel. The pseudo-boiling theory is adopted and the liquid-like, two-phase-like, and vapor-like regimes are divided for supercritical methane to analyze the heat transfer and flow features.The results are presented in micro segment to show the local convective heat transfer coefficient and pressure drop. It shows that the convective heat transfer coefficient in segments along the channel has a significant peak feature near the pseudo-critical point and a heat transfer deterioration when the average fluid temperature in the segment is higher than the pseudo-critical point. The reason is explained with the generation of vapor-like film near the channel wall that the peak feature related to a nucleateboiling-like state and heat transfer deterioration related to a film-boiling-like state. The effects of parameters, including mass flow rate, pressure, and wall heat flux on flow and heat transfer were analyzed.In calculating of the averaged heat transfer coefficient of the whole channel, the traditional method shows significant deviation and the micro segment weighted average method is adopted. The pressure drop can mainly be affected by the mass flux and pressure and little affected by the wall heat flux. The peak of the convective heat transfer coefficient can only form at high mass flux, low wall heat flux, and near critical pressure, in which condition the nucleate-boiling-like state is easier to appear. Moreover,heat transfer deterioration will always appear, since the supercritical flow will finally develop into a filmboiling-like state. So heat transfer deterioration should be taken seriously in the design and safe operation of vaporizer PCHE. The study of this work clarified the local heat transfer and flow feature of supercritical methane in microchannel and contributed to the deep understanding of supercritical methane flow of the vaporization process in PCHE.展开更多
Printed circuit heat exchangers(PCHEs)are promising candidates for recuperators in supercritical CO2 Brayton cycles.A comparative study is given in this paper on the flow and heat transfer characteristics of PCHEs wit...Printed circuit heat exchangers(PCHEs)are promising candidates for recuperators in supercritical CO2 Brayton cycles.A comparative study is given in this paper on the flow and heat transfer characteristics of PCHEs with sinusoidal and zigzag channels.With mass flow rates of 0.6–1.8 kg/h and the bend angles of 15°–30°,the thermal-hydraulic performance of the PCHEs is discussed.Results show that the sinusoidal channel is superior to the zigzag channel in its comprehensive performance.Larger bend angles result in greater reductions in pressure drop if sinusoidal channels are used instead of zigzag channels and a maximum of 48.4%reduction can be obtained in the considered working conditions.Meanwhile,the inlet sections should be carefully optimized since these sections account for up to 31%and 17%of the total pressure drop in the sinusoidal and zigzag channels,respectively.The corner shape of the zigzag channel can be specially designed to further reduce the pressure drop.The nonuniform density and heat flux distributions in both channels are found to be related to the periodic changes of flow directions and the centrifugal forces should not be ignored when optimizing the sinusoidal and zigzag channels.展开更多
The Printed Circuit Heat Exchanger(PCHE) is one of the most promising heat exchangers for Synergetic Air-breathing and Rocket Engine(SABRE). To reduce pressure drop and improve compactness, the micron-sized PCHE made ...The Printed Circuit Heat Exchanger(PCHE) is one of the most promising heat exchangers for Synergetic Air-breathing and Rocket Engine(SABRE). To reduce pressure drop and improve compactness, the micron-sized PCHE made up of rectangular channels of tens of microns in size, is used in SABRE. In present work, we focus on thermal-hydraulic-structural characteristics of micron-sized PCHE by conducting three-dimensional(3-D) numerical simulation. Helium and hydrogen are employed as the working fluids and the Stainless Steel 316(SS316) as the solid substrate. The thermal-hydraulic performance of the micron-sized PCHE is discussed by using the commercial Computational Fluid Dynamics(CFD) software of Fluent. ANSYSMechanical is also employed to simulate stress field of representative PCHE channels. The mechanical stress induced by pressure loading and the thermal stress induced by temperature gradient are found to be equally important sources of stress. To improve comprehensive performances of micron-sized PCHE, two types of channel arrangements and different channel aspect ratios are studied. The double banking is of higher thermal-hydraulic performance compared to the single banking while the stress performance is identical for the two modes. Meanwhile, the effect of channel aspect ratio is investigated by comparing thermal-hydraulic characteristics and structural stress of the model. The rectangular channel with w/h=2 achieves the most balanced stress characteristic and higher thermal-hydraulic performance.展开更多
Printed circuit heat exchangers(PCHEs)are considered as the most promising heat exchangers for use of the supercritical carbon dioxide(S-CO_(2))Brayton cycle.As crucial components operating at high pressure and therma...Printed circuit heat exchangers(PCHEs)are considered as the most promising heat exchangers for use of the supercritical carbon dioxide(S-CO_(2))Brayton cycle.As crucial components operating at high pressure and thermal load at the same time,PCHE structural integrity evaluations are essential.In this study,to assess the structural strength of PCHEs serving as recuperators and precoolers in the S-CO_(2) Brayton cycle as a waste heat recovery system for marine engines,the finite element method(FEM)is used and compared with a currently used method from ASME codes.The effects of temperature and pressure on the hot and cold sides are studied in terms of the temperature and pressure differences between the two sides and the main factors affecting its strength discussed.Then,detailed stress intensities of a PCHE under design conditions are investigated,and the results indicate that the highest stress appears at the middle of the semicircular arc of the channel,except for a concentration near the channel tip regions.Stresses of the PCHE are mainly caused by both pressure and temperature differences,with the minimum effect from temperature.The synthesis of the temperature and pressure fields exhibits a complicated action on the total stress under the design conditions.FEM was a more comprehensive means for structural assessment than the method from ASME codes.Further structural optimization of PCHE is conducted to ensure a maximum life span.This research work can provide theoretical guidance for structural integrity assessment of PCHE for the S-CO_(2) Brayton cycle.展开更多
In this study,an experimental system was built to investigate the global performance of an 80-k W zigzag printed circuit heat exchanger(PCHE).It could meet the requirement of the pre-cooler for the supercritical carbo...In this study,an experimental system was built to investigate the global performance of an 80-k W zigzag printed circuit heat exchanger(PCHE).It could meet the requirement of the pre-cooler for the supercritical carbon dioxide(S-CO_(2))Brayton power cycle and the modified effectiveness considering the pinch point is between 61.5%and 79.3%.When the outlet S-CO_(2)temperature is near the pseudo-critical point,the thermo-physical properties have more effects on heat transfer performance compared to flow characteristics.For the local performance,the mass flow rates of both sides have crucial influences on the location where the peak of S-CO_(2)Nusselt number occurs while only the S-CO_(2)flow rate affects the variation of the peak value.In addition,the influence of the radius of curvature on the secondary-flow should not be ignored.In the end,new empirical correlations were proposed considering the drastic variations of the Prandtl number.展开更多
Printed Circuit Heat Exchanger(PCHE) with high-efficiency and compact structure has great application prospect in the supercritical carbon dioxide(S-CO_(2)) power systems for the next generation of high-temperature co...Printed Circuit Heat Exchanger(PCHE) with high-efficiency and compact structure has great application prospect in the supercritical carbon dioxide(S-CO_(2)) power systems for the next generation of high-temperature concentrated solar and advanced nuclear energy. However, the high operating temperature and pressure require PCHE to maintain good heat transfer performance, as well as reliable mechanical performance at the same time. It is necessary to carry out the fluid-thermal-mechanical coupled analysis of PCHE for the safe and efficient operation of the S-CO_(2) cycle. In this paper, a three-dimensional fluid-structure coupled numerical model was established to study the fluid-thermal-mechanical coupled characteristics of PCHE under different airfoil fin arrangements. The stress distribution of the single airfoil fin was studied, and a better airfoil arrangement that comprehensively considers heat transfer characteristics and stress distribution was obtained. Aiming at the high stress caused by the stress concentration at both ends of the airfoil fin, an optimized configuration combining straight channel and airfoil channel was proposed. The results show that the difference between the flow and heat transfer performance of the two optimized structures and the reference structure is only within 1.5%, but the maximum stresses of the two optimized structures are respectively reduced by 69.4% and 70.0% compared with that of the reference structure, which significantly reduces the stress intensity of PCHE. The result provides a new method to develop the airfoil PCHE with uniform stress distribution and good thermo-hydraulic performance.展开更多
Printed circuit heat exchangers(PCHEs) have great potential to be employed in the advanced nuclear reactor systems. In this work, the equivalent thermal conduction resistance of PCHE is studied. The influences of ther...Printed circuit heat exchangers(PCHEs) have great potential to be employed in the advanced nuclear reactor systems. In this work, the equivalent thermal conduction resistance of PCHE is studied. The influences of thermal convection resistance are analyzed. The results indicate that the equivalent thermal conduction resistance of PCHEs with unequal numbers of hot plates and cold plates are sensitive to the thermal convection resistance of hot side and cold side. Specifically, for case C which has unequal number of hot and cold channels, the maximum value of equivalent thermal conduction resistance can be 1.7-2.4 times the minimum value. The equivalent thermal conduction resistance is underestimated under the isothermal boundary. In addition, the non-uniformity of the lengths of all the heat flux lines determines the influence degree of thermal convection resistance on the equivalent thermal conduction resistance. For further investigation, Latin hypercube sampling method is adopted to generate a large number of design points for each PCHE configuration. Based on the sample data, mathematical correlations and artificial neural network(ANN) for prediction of equivalent thermal conduction resistance for each case are developed. The proposed correlations of equivalent thermal conduction resistance for each case have acceptable accuracy of prediction with a wide range covering general engineering applications. The ANN model can achieve much better prediction accuracy than the proposed correlations thus it is recommended in the cases that the prediction accuracy is considered as the priority need.展开更多
文摘The efficiency and irreversibility defined based on the second law of thermodynamics provide a new path for heat exchangers design and make performance analysis more straightforward and elegant.The second law of thermodynamics is applied in a Straight Microchannel Printed Circuit heat exchanger to determine the thermal performance of different shapes of Boehmite Alumina compared to Al2O3 aluminum oxide.The various forms of non-spherical Boehmite Alumina are characterized dynamically and thermodynamically through dynamic viscosity and thermal conductivity,using empirical coefficients.The non-spherical shape includes platelet,cylindrical,blades,and bricks forms.Graphical results are presented for thermal efficiency,thermal irreversibility,heat transfer rate,and nanofluid exit temperature.The non-spherical shapes of Boehmite Alumina show different thermal characteristics concerning the spherical shape when there are variations in fluid flow rates and the nanoparticles fraction.Furthermore,it was theoretically demonstrated that non-spherical particles have higher heat transfer rates than spherical particles,emphasizing platelets and cylindrical shapes for the low volume fraction of nanoparticles and bricks and blades for high volume fraction.
基金supported by the School of Mechanical,Institute of Engineering,Suranaree University of Technology (Thailand),Mechanical and Process System Engineering Program,and Vithedbundit Scholarship,Institute of Engineering,Suranaree University of Technology (Thailand)。
文摘This study investigated the effects of zigzag-flow channel bending angle in printed circuit heat exchangers(PCHEs) using a computational fluid dynamics method with ANSYS-FLUENT simulation.The three-dimensional model of PCHE with a 15° curved,zigzag channel was conducted for preliminary validation.The comparisons between the CFD simulation results and the experimental data showed good agreement with some discrepancies in the heat transfer and pressure drop results.In addition,different bending angle configurations(0°,3° to 30°) of zigzag channels were analyzed to obtain better thermal-hydraulic performance of the zigzag channel PCHE under different inlet mass flow rates.The criteria of heat transfer and frictional factor were applied to evaluate the thermal-hydraulic performance of the PCHE.The results showed that the 6° and 9°bending channel provided good thermal-hydraulic performance.New correlations were developed using the 6°and 9° bending channel angles in PCHE designs to predict the Nusselt number and friction factor.
基金supported by the National Key R&D Program of China(No.2022YFB3304001)the Key R&D Special Program of Shaanxi province(No.2022GXLH-01-04)。
文摘Printed circuit heat exchanger(PCHE)has been widely used in supercritical carbon dioxide(S-CO_(2))power systems because of its high heat transfer efficiency and good compactness.However,due to the large variety of PCHE configurations,channel selection in practical applications lacks a basis.Therefore,this paper discussed the heat transfer and friction characteristics and the synergy of three fields in the channel under the guidance of the field synergy principle for four typical PCHE channels.Additionally,the comprehensive performance of four channels was compared.Finally,the heat transfer and friction factor correlations for S-CO_(2)in four channels were established.The findings demonstrate that the synergy of velocity and pressure fields of the straight channel PCHE is better(β≈180°),so its resistance loss is relatively small.The zigzag and sinusoidal wavy channels and the airfoil fins can reduce the angle a between the temperature gradient and velocity,thus enhancing the heat transfer.The sinusoidal wavy channel can reduce flow resistance compared to the zigzag channel due to the rounded corners.The streamlined airfoil structure can guide the flow and reduce backflow,thus reducing resistance losses.In the range of Re studied in this paper,the maximum error of the proposed heat transfer and friction factor correlations of PCHE is 7.0%,which shows good fitting accuracy.The research in this paper can provide a reference for the selection and design of PCHE with different channel configurations.
基金provided by Science and Technology Development Project of Jilin Province(No.20230101338JC)。
文摘The printed circuit heat exchanger(PCHE) is receiving wide attention as a new kind of compact heat exchanger and is considered as a promising vaporizer in the LNG process. In this paper, a PCHE straight channel in the length of 500 mm is established, with a semicircular cross section in a diameter of 1.2 mm.Numerical simulation is employed to investigate the flow and heat transfer performance of supercritical methane in the channel. The pseudo-boiling theory is adopted and the liquid-like, two-phase-like, and vapor-like regimes are divided for supercritical methane to analyze the heat transfer and flow features.The results are presented in micro segment to show the local convective heat transfer coefficient and pressure drop. It shows that the convective heat transfer coefficient in segments along the channel has a significant peak feature near the pseudo-critical point and a heat transfer deterioration when the average fluid temperature in the segment is higher than the pseudo-critical point. The reason is explained with the generation of vapor-like film near the channel wall that the peak feature related to a nucleateboiling-like state and heat transfer deterioration related to a film-boiling-like state. The effects of parameters, including mass flow rate, pressure, and wall heat flux on flow and heat transfer were analyzed.In calculating of the averaged heat transfer coefficient of the whole channel, the traditional method shows significant deviation and the micro segment weighted average method is adopted. The pressure drop can mainly be affected by the mass flux and pressure and little affected by the wall heat flux. The peak of the convective heat transfer coefficient can only form at high mass flux, low wall heat flux, and near critical pressure, in which condition the nucleate-boiling-like state is easier to appear. Moreover,heat transfer deterioration will always appear, since the supercritical flow will finally develop into a filmboiling-like state. So heat transfer deterioration should be taken seriously in the design and safe operation of vaporizer PCHE. The study of this work clarified the local heat transfer and flow feature of supercritical methane in microchannel and contributed to the deep understanding of supercritical methane flow of the vaporization process in PCHE.
基金supported by the National Natural Science Foundation of China(Grant Nos.51822606,51806249)Hunan Provincial Natural Science Foundation of China(Grant No.2019JJ50801)。
文摘Printed circuit heat exchangers(PCHEs)are promising candidates for recuperators in supercritical CO2 Brayton cycles.A comparative study is given in this paper on the flow and heat transfer characteristics of PCHEs with sinusoidal and zigzag channels.With mass flow rates of 0.6–1.8 kg/h and the bend angles of 15°–30°,the thermal-hydraulic performance of the PCHEs is discussed.Results show that the sinusoidal channel is superior to the zigzag channel in its comprehensive performance.Larger bend angles result in greater reductions in pressure drop if sinusoidal channels are used instead of zigzag channels and a maximum of 48.4%reduction can be obtained in the considered working conditions.Meanwhile,the inlet sections should be carefully optimized since these sections account for up to 31%and 17%of the total pressure drop in the sinusoidal and zigzag channels,respectively.The corner shape of the zigzag channel can be specially designed to further reduce the pressure drop.The nonuniform density and heat flux distributions in both channels are found to be related to the periodic changes of flow directions and the centrifugal forces should not be ignored when optimizing the sinusoidal and zigzag channels.
基金supported by the National Key Research and Development Program of China under grant number 2017YFB0601803the National Natural Science Foundation of China under grant number 51576156the 111 Project under grant number B16038
文摘The Printed Circuit Heat Exchanger(PCHE) is one of the most promising heat exchangers for Synergetic Air-breathing and Rocket Engine(SABRE). To reduce pressure drop and improve compactness, the micron-sized PCHE made up of rectangular channels of tens of microns in size, is used in SABRE. In present work, we focus on thermal-hydraulic-structural characteristics of micron-sized PCHE by conducting three-dimensional(3-D) numerical simulation. Helium and hydrogen are employed as the working fluids and the Stainless Steel 316(SS316) as the solid substrate. The thermal-hydraulic performance of the micron-sized PCHE is discussed by using the commercial Computational Fluid Dynamics(CFD) software of Fluent. ANSYSMechanical is also employed to simulate stress field of representative PCHE channels. The mechanical stress induced by pressure loading and the thermal stress induced by temperature gradient are found to be equally important sources of stress. To improve comprehensive performances of micron-sized PCHE, two types of channel arrangements and different channel aspect ratios are studied. The double banking is of higher thermal-hydraulic performance compared to the single banking while the stress performance is identical for the two modes. Meanwhile, the effect of channel aspect ratio is investigated by comparing thermal-hydraulic characteristics and structural stress of the model. The rectangular channel with w/h=2 achieves the most balanced stress characteristic and higher thermal-hydraulic performance.
基金financially supported by the High-Tech Ship Research Project of Ministry of Industry and Information Technology(No.MIIT[2017]614)the Fundamental Research Funds for the Central Universities(WUT:2021IUA105)。
文摘Printed circuit heat exchangers(PCHEs)are considered as the most promising heat exchangers for use of the supercritical carbon dioxide(S-CO_(2))Brayton cycle.As crucial components operating at high pressure and thermal load at the same time,PCHE structural integrity evaluations are essential.In this study,to assess the structural strength of PCHEs serving as recuperators and precoolers in the S-CO_(2) Brayton cycle as a waste heat recovery system for marine engines,the finite element method(FEM)is used and compared with a currently used method from ASME codes.The effects of temperature and pressure on the hot and cold sides are studied in terms of the temperature and pressure differences between the two sides and the main factors affecting its strength discussed.Then,detailed stress intensities of a PCHE under design conditions are investigated,and the results indicate that the highest stress appears at the middle of the semicircular arc of the channel,except for a concentration near the channel tip regions.Stresses of the PCHE are mainly caused by both pressure and temperature differences,with the minimum effect from temperature.The synthesis of the temperature and pressure fields exhibits a complicated action on the total stress under the design conditions.FEM was a more comprehensive means for structural assessment than the method from ASME codes.Further structural optimization of PCHE is conducted to ensure a maximum life span.This research work can provide theoretical guidance for structural integrity assessment of PCHE for the S-CO_(2) Brayton cycle.
基金supported by the National Natural Science Foundation of China(No.51606191)the National Key Research and Development Program-China(2017YFB0601803)Key deployment project of Chinese Academy of Sciences(Y7220112H1)。
文摘In this study,an experimental system was built to investigate the global performance of an 80-k W zigzag printed circuit heat exchanger(PCHE).It could meet the requirement of the pre-cooler for the supercritical carbon dioxide(S-CO_(2))Brayton power cycle and the modified effectiveness considering the pinch point is between 61.5%and 79.3%.When the outlet S-CO_(2)temperature is near the pseudo-critical point,the thermo-physical properties have more effects on heat transfer performance compared to flow characteristics.For the local performance,the mass flow rates of both sides have crucial influences on the location where the peak of S-CO_(2)Nusselt number occurs while only the S-CO_(2)flow rate affects the variation of the peak value.In addition,the influence of the radius of curvature on the secondary-flow should not be ignored.In the end,new empirical correlations were proposed considering the drastic variations of the Prandtl number.
基金supported by the National Key R&D Program of China(2020YFB1506305)the National Natural Science Foundation of China(No.52076161)the National Science and Technology Major Project of China(J2019-Ⅲ-0021-0065)。
文摘Printed Circuit Heat Exchanger(PCHE) with high-efficiency and compact structure has great application prospect in the supercritical carbon dioxide(S-CO_(2)) power systems for the next generation of high-temperature concentrated solar and advanced nuclear energy. However, the high operating temperature and pressure require PCHE to maintain good heat transfer performance, as well as reliable mechanical performance at the same time. It is necessary to carry out the fluid-thermal-mechanical coupled analysis of PCHE for the safe and efficient operation of the S-CO_(2) cycle. In this paper, a three-dimensional fluid-structure coupled numerical model was established to study the fluid-thermal-mechanical coupled characteristics of PCHE under different airfoil fin arrangements. The stress distribution of the single airfoil fin was studied, and a better airfoil arrangement that comprehensively considers heat transfer characteristics and stress distribution was obtained. Aiming at the high stress caused by the stress concentration at both ends of the airfoil fin, an optimized configuration combining straight channel and airfoil channel was proposed. The results show that the difference between the flow and heat transfer performance of the two optimized structures and the reference structure is only within 1.5%, but the maximum stresses of the two optimized structures are respectively reduced by 69.4% and 70.0% compared with that of the reference structure, which significantly reduces the stress intensity of PCHE. The result provides a new method to develop the airfoil PCHE with uniform stress distribution and good thermo-hydraulic performance.
基金supported by the State Key Program of National Natural Science Foundation of China(No.51536007)the Foundation for Innovative Research Groups of the National Natural Science Foundation of China(Grant No.51721004)+1 种基金the Program of Introducing Talents of Discipline to Universities Project(Grant No.B16038)the Fundamental Research Funds for the Central Universities。
文摘Printed circuit heat exchangers(PCHEs) have great potential to be employed in the advanced nuclear reactor systems. In this work, the equivalent thermal conduction resistance of PCHE is studied. The influences of thermal convection resistance are analyzed. The results indicate that the equivalent thermal conduction resistance of PCHEs with unequal numbers of hot plates and cold plates are sensitive to the thermal convection resistance of hot side and cold side. Specifically, for case C which has unequal number of hot and cold channels, the maximum value of equivalent thermal conduction resistance can be 1.7-2.4 times the minimum value. The equivalent thermal conduction resistance is underestimated under the isothermal boundary. In addition, the non-uniformity of the lengths of all the heat flux lines determines the influence degree of thermal convection resistance on the equivalent thermal conduction resistance. For further investigation, Latin hypercube sampling method is adopted to generate a large number of design points for each PCHE configuration. Based on the sample data, mathematical correlations and artificial neural network(ANN) for prediction of equivalent thermal conduction resistance for each case are developed. The proposed correlations of equivalent thermal conduction resistance for each case have acceptable accuracy of prediction with a wide range covering general engineering applications. The ANN model can achieve much better prediction accuracy than the proposed correlations thus it is recommended in the cases that the prediction accuracy is considered as the priority need.