Electron spins confined in semiconductor quantum dots(QDs)are one of potential candidates for physical implementation of scalable quantum information processing technologies.Tunnel coupling based inter exchange intera...Electron spins confined in semiconductor quantum dots(QDs)are one of potential candidates for physical implementation of scalable quantum information processing technologies.Tunnel coupling based inter exchange interaction between QDs is crucial in achieving single-qubit manipulation,two-qubit gate,quantum communication and quantum simulation.This review first provides a theoretical perspective that surveys a general framework,including the Helter−London approach,the Hund−Mulliken approach,and the Hubbard model,to describe the inter exchange interactions between semiconductor quantum dots.An electrical method to control the inter exchange interaction in a realistic device is proposed as well.Then the significant achievements of inter exchange interaction in manipulating single qubits,achieving two-qubit gates,performing quantum communication and quantum simulation are reviewed.The last part is a summary of this review.展开更多
The dependences of spin wave resonance(SWR)frequency on the surface anisotropy field,interface exchange coupling,symmetry,biquadratic exchange(BQE)interaction,film thickness,and the external magnetic field in bilayer ...The dependences of spin wave resonance(SWR)frequency on the surface anisotropy field,interface exchange coupling,symmetry,biquadratic exchange(BQE)interaction,film thickness,and the external magnetic field in bilayer ferromagnetic films are theoretically analyzed by employing the linear spin wave approximation and Green’s function method.A remarkable increase of SWR frequency,except for energetically lower two modes,can be obtained in our model that takes the BQE interaction into account.Again,the effect of the external magnetic field on SWR frequency can be increased by increasing the biquadratic to interlayer exchange ratio.It has been identified that the BQE interaction is of utmost importance in improving the SWR frequency of the bilayer ferromagnetic films.In addition,for bilayer ferromagnetic films,the frequency gap between the energetically highest mode and lowest mode is found to increase by increasing the biquadratic to interlayer exchange ratio and film thickness and destroying the symmetry of the system.These results can be used to improve the understanding of magnetic properties in bilayer ferromagnetic films and thus may have prominent implications for future magnetic devices.展开更多
The influence of annealing time on the magnetic properties and microstructure of nanocomposite Pr7.5Dy1Fe71Co15Nb1B4.5 ribbons was systematically investigated by the methods of vibrating sample magnetometer (VSM), ...The influence of annealing time on the magnetic properties and microstructure of nanocomposite Pr7.5Dy1Fe71Co15Nb1B4.5 ribbons was systematically investigated by the methods of vibrating sample magnetometer (VSM), X-ray diffraction (XRD) and high resolution transmission electron microscopy (HRTEM). Interaction domains derived from strong exchange coupling interactions between hard and soft magnetic grains were imaged using magnetic force microscopy (MFM). Maximum remanence, intrinsic coercivity, and maximum energy product values were obtained in the ribbons annealed at 700℃ for 15 min, which were composed of Pr2(Fe, Co)14B, α-(Fe, Co), and slight Pr2(Fe, CO)17 phases. Although Jr, Hci, and (Bn)max decreased gradually with further increase of annealing time, it is emphasized that comparatively high Jr and Hci and (BH)max were obtained in a wide annealing time period of 15 to 360 min. The shape of initial magnetization curves and hysteresis loops change as a function of annealing time, indicating different magnetization reversal routes, which can be fully explained by the corresponding microstructure.展开更多
The exchange interaction between the electrons in the different magnetic ions and the spin-fluctuation of the magnetic ions exist in the paramagnetic media NdF3. The exchange interaction between the electrons in the d...The exchange interaction between the electrons in the different magnetic ions and the spin-fluctuation of the magnetic ions exist in the paramagnetic media NdF3. The exchange interaction between the electrons in the different magnetic ions may be equivalent to an effective field Hin that is in direct proportion to the magnetization M. The spin-fluctuation of the magnetic ions leads the coefficient of the effective field to vary with temperature. The effective field is given as Hin = -(0.75 + 0.22T) × 10^-5M in NdF3. When the secondary crystal field effect is taken into account, the magnetic susceptibility and Verdet constant are calculated for NdF3 by means of the effective field Hin and the applied field He. The calculated results are in agreement with the measured ones.展开更多
A clear microscopic understanding of exchange bias is crucial for its application in magnetic recording, and further progress in this area is desired. Based on the results of our first-principles calculations and Mont...A clear microscopic understanding of exchange bias is crucial for its application in magnetic recording, and further progress in this area is desired. Based on the results of our first-principles calculations and Monte Carlo simulations,we present a theoretical proposal for a stacking-dependent exchange bias in two-dimensional compensated van der Waals ferromagnetic/antiferromagnetic bilayer heterostructures. The exchange bias effect emerges in stacking registries that accommodate inhomogeneous interlayer magnetic interactions between the ferromagnetic layer and different spin sublattices of the antiferromagnetic layer. Moreover, the on/off switching and polarity reversal of the exchange bias can be achieved by interlayer sliding, and the strength can be modulated using an external electric field. Our findings push the limits of exchange bias systems to extreme bilayer thickness in two-dimensional van der Waals heterostructures, potentially stimulating new experimental investigations and applications.展开更多
Exchange interaction plays an important role on magnetic properties of nanocomposite magnets consisting of hard- and soft-magnetic phases. Here the exchange interaction in the Sm-Co/Co (and Fe65Co35) magnetic films ...Exchange interaction plays an important role on magnetic properties of nanocomposite magnets consisting of hard- and soft-magnetic phases. Here the exchange interaction in the Sm-Co/Co (and Fe65Co35) magnetic films was characterized by measuring static (mr(H)) and demagnetized (md(H)) remanence curves. According to conventional method: δm(H)=md(H) - [1 - 2mr(H)], the exchange interaction was evaluated. The switching fields H′p and Hp, at which static (mr(H)) and demagnetized (md(H)) remanence show the fastest change, were identified. The relative ratio η=Hp-H′p/Hp of switching fields H′p and Hp has a linear relationship with the maximum value δmmax of δm(H) curves, proposing an alternative way to characterize the exchange interaction.展开更多
This paper theoretically investigates the effects of crystal field and exchange interaction field on magnetic properties in dysprosium gallium garnet under extreme conditions (low temperatures and high magnetic field...This paper theoretically investigates the effects of crystal field and exchange interaction field on magnetic properties in dysprosium gallium garnet under extreme conditions (low temperatures and high magnetic fields) based on quantum theory. Here, five sets of crystal field parameters are discussed and compared. It demonstrates that, only considering the crystal field effect, the experiments can not be successfully explained. Thus, referring to the molecular field theory, an effective exchange field associated with the Dy-Dy exchange interaction is further taken into account. Under special consideration of crystal field and the exchange interaction field, it obtains an excellent agreement between the theoretical results and experiments, and further confirms that the exchange interaction field between rare-earth ions has great importance to magnetic properties in paramagnetic rare-earth gallium garnets.展开更多
In present investigation exchange interactions of Pr_(n+1)Co_(3n+5)B_(2n)-type compounds have been evalu- ated in the light of molecular-field theory. The exchange interactions and ferromagnetism in these compounds ar...In present investigation exchange interactions of Pr_(n+1)Co_(3n+5)B_(2n)-type compounds have been evalu- ated in the light of molecular-field theory. The exchange interactions and ferromagnetism in these compounds are discussed in terms of lattice parameters and interatomic distance between Co atom.展开更多
The dynamic properties of interacting vortex-antivortex pairs in thin film are studied by analytical calculations. An- alytical expressions for the magnetization vector distribution of vortex-antivortex pairs and the ...The dynamic properties of interacting vortex-antivortex pairs in thin film are studied by analytical calculations. An- alytical expressions for the magnetization vector distribution of vortex-antivortex pairs and the trivortex states are given. The magnetic states of the vortices are treated as having rigid structures, i.e., the vortex maintains its spin distribution when moving. The trajectories of the vortex cores are calculated by the Thiele's equation. It is found that the vortex-antivortex pair rotates around each other when they have opposite polarities, however, vortex and antivortex cores move along straight lines when they have the same polarity. The frequency of the rotation decreases with increasing the distance between the two cores of vortex-antivortex pair, and it has a lower value when a third vortex is introduced.展开更多
Based on a single ion model, Hamiltonian of the simplest form about magnetocrystalline anisotropy for Tb3+ ion was solved by using the numerical method. The relation between the stabilization energy, crystal field coe...Based on a single ion model, Hamiltonian of the simplest form about magnetocrystalline anisotropy for Tb3+ ion was solved by using the numerical method. The relation between the stabilization energy, crystal field coefficient B20 and the magnetic exchange interaction was studied as temperature approaches to 0 K. The results show that the stabilization energy contributed by Tb3+ is linear with crystal field coefficient B20 approximately, but it is insensitive to the change of magnetic exchange interaction for the strong magnetic substances such as TbCo5, Tb2Co17 and Tb2Fe14B compounds.展开更多
Structure, magnetic properties and magnetostriction of Sm0.9Pr0.1(Fe1-xCox)2 compounds have been investigated by means of X-ray diffraction, a.c. initial susceptibility, extracting sample magnetometer, Mossbauer spec-...Structure, magnetic properties and magnetostriction of Sm0.9Pr0.1(Fe1-xCox)2 compounds have been investigated by means of X-ray diffraction, a.c. initial susceptibility, extracting sample magnetometer, Mossbauer spec-troscopy and standard strain gauge techniques. The lattice parameter a of the MgCu2-type Laves compounds Sm0.9Pr0.1(Fe1-xCox)2 decreases nonlinearly with increasing Co concentration, deviating from the Vegard's law. Curie temperature Tc increases initially from 668 K for x=0 to 694 K for x=0.2 and then decreases to 200 K for x=1.0. The saturation magnetization Ms at temperatures 1.5 K, 77 K and 300 K have the same variation tendency as the composition dependence of Curie temperature, in consistence with rigid-band model. The easy magnetization direction (EMD) of Sm0.9Pr0.1(Fe1-xCox)2 lies along [111] direction in the range x<0.6, and changes to [110] for x=0.8, while Sm0.9Pr0.1Co2 stays in the paramagnetic state at room temperature. The composition dependence of the average hyperfine field,Hhf , demonstrates a similar variation tendency as that of the saturation magnetization Ms and Curie temperature Tc. The spontaneous magnetostricton Am increases with increasing Co content. The saturation magnetostriction λs decreases monotonically with increasing x, which is caused by the increase of magnetostriction constant λ100 with opposite sign to that of Am. A two-sublattice model has been proposed to understand the intermediate region between the [111] and [110] spin configurations, which can also be used to explain the temperature dependence of magnetization.展开更多
Taking α-Fe and Nd_2Fe_(14)B grains as example, the grain size dependence of the exchange-coupling interaction and effective anisotropy and also their variations depending on the ratio of magnetically soft and hard g...Taking α-Fe and Nd_2Fe_(14)B grains as example, the grain size dependence of the exchange-coupling interaction and effective anisotropy and also their variations depending on the ratio of magnetically soft and hard grain sizes, D_s∶D_h, were investigated. When grain size D>L_(ex), the grain’s anisotropy is the statistic value of the coupled and uncoupled part. The anisotropy constant of uncoupled part is the common value K_1 and that of coupled part varies with the distance to the grain surface. The effective anisotropy constant between magnetically soft and hard grains, K_(eff), can be expressed as the sum of the products of volume fractions for soft and hard grains, respectively, and the corresponding mean anisotropy constants. The calculation results indicate that the exchange-coupling interaction is enhanced with the reduction of grain size, and the effective anisotropy decreases with reducing grain size and increasing ratio of D_s∶D_h. In order to get high effective anisotropy constant, K_(eff), in composite magnetically soft-hard grains, the hard grain size should be larger than 30 nm and the soft grain size should be about 10 nm.展开更多
SmCo/FeCo/SmCo trilayer was deposited with two different thickness configurations for soft phase (FeCo);50 nm/10 nm/50 nm and 50 nm/25 nm/50 nm were deposited on Si (111) substrate and Ta (50 nm) seed layer by RF magn...SmCo/FeCo/SmCo trilayer was deposited with two different thickness configurations for soft phase (FeCo);50 nm/10 nm/50 nm and 50 nm/25 nm/50 nm were deposited on Si (111) substrate and Ta (50 nm) seed layer by RF magnetron sputtering in a pressure, p, of 30 - 35 m Torr. After deposition the films were annealed under Ar atmosphere at temperature T equal to 923 and 973 for different times followed by quenching in water. X-ray diffraction patterns were obtained to identified phase presents and calculate average crystallite size. To study the effect of configuration thickness in soft phases, DC magnetic measurements were carried out;the measurements were done in the temperature interval of 300 - 50 K. Hysteresis loops collected at low temperatures exposed an increment in coercivity with the decrease of T and at same time, presented a “knee” in the second quadrant of the demagnetization curve, which suggests that the inter-layer exchange coupling becomes less effective, being more evident for sample with 50 nm/25 nm/50 nm thickness. Moreover, δM (H) plots were calculated from magnetic measurements at three different temperatures, T, equal to 300, 150 and 50 K, which corroborates that the dipolar interactions became stronger when thickness of soft phases increases. Finally, the thickness effect is attributed to the SmCo5 phase magnetocrystalline anisotropy constant, which is responsible for the exchange coupling length.展开更多
The thesis summarizes the connotation of rural tourism and divides it into six types,including rural sight-seeing,rural body-building activity,rural folk culture,rural experience of farm work,rural business affairs,an...The thesis summarizes the connotation of rural tourism and divides it into six types,including rural sight-seeing,rural body-building activity,rural folk culture,rural experience of farm work,rural business affairs,and study and development.It outlines the theory of sustainable development of rural tourism and points out that what sustainable development of tourism concerns is the coordination of ecology,economy,and society centering on human and nature.On the basis of introducing the connotation of modern agriculture,it divides modern agriculture into six types,including sightseeing agriculture,leisure agriculture,green agriculture,characteristic agriculture,factory agriculture,and three-dimensional agriculture.And by concluding,it obtains the combination model of modern agriculture and rural tourism.Based on the introduction of the above related theories,the thesis discusses the interaction and integration model of the sustainable development of modern agriculture and rural tourism.It emphatically analyzes the integration model of modern agriculture and rural tourism,including pastoral agriculture tourism model(sightseeing village,leisure farm,citizen farm),and science education tourism model(agricultural science and technology education base,tourism and leisure education agricultural park,children's,agricultural education base,agricultural exposition).Based on the interaction and integration relationship between modern agriculture and rural tourism,the thesis puts forward corresponding countermeasures so as to promote their positive development and realize the maximum of ecological,social and economic benefits.展开更多
The temperature dependence of lattice parameters a and c of intermetallic compounds RMn 2Ge 2(R=La, Sm and Gd)were measured in the temperature range of 10800 K by using the X-ray diffractometer . It is found that the ...The temperature dependence of lattice parameters a and c of intermetallic compounds RMn 2Ge 2(R=La, Sm and Gd)were measured in the temperature range of 10800 K by using the X-ray diffractometer . It is found that the high temperature magnetic transitions of Mn-subsystem in light rare earth compounds from paramagnetic to antiferromagnetic state accompany the negative magnetoelastic anomalies of lattice parameters c, where a does not change. This indicates that the antiferromagnetic component of intralayer Mn-Mn exchange coupling is correlated with lattice constant c. The low temperature first order ferromagnetism→antiferromagnetism transitions(or antiferromagnetism→ferromagnetism transition) of Mn-subsystem in SmMn 2Ge 2 and GdMn 2Ge 2 accompany the abruptly decrease(or increase) of lattice parameter a, and Δa/a≈0.15%. This demonstrates that the interlayer Mn-Mn exchange interaction is very sensitive to the intralayer Mn-Mn distance. The critical value of lattice constant a k, at which the interlayer Mn-Mn coupling changes its sign, is 4.044 5×10 -10 m. Based on the molecular field model of exchange interaction the magnetic curves of GdMn 2Ge 2 single crystal at different temperatures were calculated and a good agreement with experimental data had gotten. The Gd-Gd, Gd-Mn, intralayer Mn-Mn and interlayer Mn-Mn exchange coupling parameters were estimated.展开更多
A method for incorporation of controlling the heat exchanger networks with or without splits is proposed by integrating mathemati-cal programming and knowledge engineering. The simultaneous optimal mathematical model ...A method for incorporation of controlling the heat exchanger networks with or without splits is proposed by integrating mathemati-cal programming and knowledge engineering. The simultaneous optimal mathematical model is established. This method can be practically used in the integration of large-scale heat exchanger networks, not only to synthesize automatically but also to satisfy the requirement of struc-tural controllability with more objective human intervention.展开更多
By using the traveling wave method, the solutions of the elliptic function wave and the solitary wave are obtained in a ferromagnetic spin chain with a biquadratic exchange interaction, a single ion anisotropic intera...By using the traveling wave method, the solutions of the elliptic function wave and the solitary wave are obtained in a ferromagnetic spin chain with a biquadratic exchange interaction, a single ion anisotropic interaction and an anisotropic nearest neighbour interaction. The effects of the biquadratic exchange interaction and the single ion anisotropic interaction on the properties (width, peak and stability) of the soliton are investigated. It is also found that the effects vary with the strengths of these interactions.展开更多
Synchronous or quasi-synchronous stereoscopic sea-ice-air comprehensive observation was conducted during the First China Arctic Expedition in summer of 1999. Based on these data, the role of sea ice in sea-air exchang...Synchronous or quasi-synchronous stereoscopic sea-ice-air comprehensive observation was conducted during the First China Arctic Expedition in summer of 1999. Based on these data, the role of sea ice in sea-air exchange was studied. The study shows that the kinds, distribution and thickness of sea ice and their variation significantly influence the air-sea heat exchange. In floating ice area, the heat momentum transferred from ocean to atmosphere is in form of latent heat; latent heat flux is closely related to floating ice concentration; if floating ice is less, the heat flux would be larger. Latent heat flux is about 21 23 6 W·m -2, which is greater than sensible heat flux. On ice field or giant floating ice, heat momentum transferred from atmosphere to sea ice or snow surface is in form of sensible heat. In the floating ice area or polynya, sea-air exchange is the most active, and also the most sensible for climate. Also this area is the most important condition for the creation of Arctic vapor fog. The heat exchange of a large-scale vapor fog process of about 500000 km 2 on Aug. 21 22,1999 was calculated; the heat momentum transferred from ocean to air was about 14 8×10 9 kW. There are various kinds of sea fog, radiation fog, vapor fog and advection fog, forming in the Arctic Ocean in summer. One important cause is the existence of sea ice and its resultant complexity of both underlying surface and sea-air exchange.展开更多
In this paper heat exchange coefficient and separation efficiency of an annular structured internal heat-integrated distillation column(HIDi C) were experimentally measured. About 50% heat of the inner column could be...In this paper heat exchange coefficient and separation efficiency of an annular structured internal heat-integrated distillation column(HIDi C) were experimentally measured. About 50% heat of the inner column could be transferred to the outer column. The overall heat exchange coefficient decreased with an increase in pressure ratio of the inner column and the outer column, but was little affected by the F-factor. The increase of the pressure ratio decreased obviously the separation efficiency of the outer column but had little effect on that of the inner column.展开更多
Effects of the intergrain exchange interaction on magnetic properties of nanocomposite magnets were investigated by using the computer simulation based on the micromagnetic theory. The simulation was carried out unde...Effects of the intergrain exchange interaction on magnetic properties of nanocomposite magnets were investigated by using the computer simulation based on the micromagnetic theory. The simulation was carried out under the assumptions that the strength of the intergrain exchange interaction is weaker than that of the intragrain exchange interaction, that inhomogeneous nanostructures result in the distribution of the strength of the intergrain exchange interaction, and that there exists nonmagnetic intergranular phase (NMIP) between grain boundaries. The distribution of the strength of the intergrain exchange interaction was simulated by the lognormal distribution with the standard deviation of σ.The calculations for Nd 2Fe 14B/α-Fe nanocomposite magnets reveal that a suitably weak intergrain exchange interaction and small grain size enable us to improve magnetic properties. It is also found that a Nd 2Fe 14B/α-Fe nanocomposite magnet has a potential of a (BH) max value exceeding 300 kJ·m -3. On the other hand, the calculations for Nd 2Fe 14B/Fe 3B nanocomposite magnets reveal that the distribution of the strength of the intergrain exchange interaction deteriorates magnetic properties significantly. Particularly, this tendency is remarkable, when the grain size L is larger than its optimum value, 11 nm. The existence of nonmagnetic boundary layers accelerats this tendency. At σ=0.2, the calculated demagnetization curve for the model magnet composed of Nd 2Fe 14B(36%)/Fe 3B(54%)/NMIP(10%) (Valume fraction) grains (L=15 nm) agrees with that obtained experimentally for a Nd 2Fe 14B/Fe 3B nanocomposite magnet. These results suggest importance of refinement of grain size, suppression of a nonmagnetic intergranular phase, and preparation of homogeneous nanostructure for superior magnetic properties.展开更多
基金funded by National Natural Science Foundation of China,(Grant Nos.11974030 and 92165208)。
文摘Electron spins confined in semiconductor quantum dots(QDs)are one of potential candidates for physical implementation of scalable quantum information processing technologies.Tunnel coupling based inter exchange interaction between QDs is crucial in achieving single-qubit manipulation,two-qubit gate,quantum communication and quantum simulation.This review first provides a theoretical perspective that surveys a general framework,including the Helter−London approach,the Hund−Mulliken approach,and the Hubbard model,to describe the inter exchange interactions between semiconductor quantum dots.An electrical method to control the inter exchange interaction in a realistic device is proposed as well.Then the significant achievements of inter exchange interaction in manipulating single qubits,achieving two-qubit gates,performing quantum communication and quantum simulation are reviewed.The last part is a summary of this review.
基金the Natural Science Foundation of Inner Mongolia of China(Grant No.2019MS01021)the Research Program of Science and Technology at Universi-ties of Inner Mongolia Autonomous Region,China(Grant No.NJZY21454)the Theoretical Physics Discipline De-velopment and Communication Platform of Inner Mongolia University(Grant No.12147216).
文摘The dependences of spin wave resonance(SWR)frequency on the surface anisotropy field,interface exchange coupling,symmetry,biquadratic exchange(BQE)interaction,film thickness,and the external magnetic field in bilayer ferromagnetic films are theoretically analyzed by employing the linear spin wave approximation and Green’s function method.A remarkable increase of SWR frequency,except for energetically lower two modes,can be obtained in our model that takes the BQE interaction into account.Again,the effect of the external magnetic field on SWR frequency can be increased by increasing the biquadratic to interlayer exchange ratio.It has been identified that the BQE interaction is of utmost importance in improving the SWR frequency of the bilayer ferromagnetic films.In addition,for bilayer ferromagnetic films,the frequency gap between the energetically highest mode and lowest mode is found to increase by increasing the biquadratic to interlayer exchange ratio and film thickness and destroying the symmetry of the system.These results can be used to improve the understanding of magnetic properties in bilayer ferromagnetic films and thus may have prominent implications for future magnetic devices.
基金This work was financially supported by the National Natural Science Foundation of China (No.10074005)
文摘The influence of annealing time on the magnetic properties and microstructure of nanocomposite Pr7.5Dy1Fe71Co15Nb1B4.5 ribbons was systematically investigated by the methods of vibrating sample magnetometer (VSM), X-ray diffraction (XRD) and high resolution transmission electron microscopy (HRTEM). Interaction domains derived from strong exchange coupling interactions between hard and soft magnetic grains were imaged using magnetic force microscopy (MFM). Maximum remanence, intrinsic coercivity, and maximum energy product values were obtained in the ribbons annealed at 700℃ for 15 min, which were composed of Pr2(Fe, Co)14B, α-(Fe, Co), and slight Pr2(Fe, CO)17 phases. Although Jr, Hci, and (Bn)max decreased gradually with further increase of annealing time, it is emphasized that comparatively high Jr and Hci and (BH)max were obtained in a wide annealing time period of 15 to 360 min. The shape of initial magnetization curves and hysteresis loops change as a function of annealing time, indicating different magnetization reversal routes, which can be fully explained by the corresponding microstructure.
基金Project supported by the Science and Technology Foundation of China University of Mining and Technology (Grant No OK061066)
文摘The exchange interaction between the electrons in the different magnetic ions and the spin-fluctuation of the magnetic ions exist in the paramagnetic media NdF3. The exchange interaction between the electrons in the different magnetic ions may be equivalent to an effective field Hin that is in direct proportion to the magnetization M. The spin-fluctuation of the magnetic ions leads the coefficient of the effective field to vary with temperature. The effective field is given as Hin = -(0.75 + 0.22T) × 10^-5M in NdF3. When the secondary crystal field effect is taken into account, the magnetic susceptibility and Verdet constant are calculated for NdF3 by means of the effective field Hin and the applied field He. The calculated results are in agreement with the measured ones.
基金Project supported by the National Key Research and Development Program of China (Grant No.2019YFA0210004)the Strategic Priority Research Program of Chinese Academy of Sciences (Grant No.XDB30000000)+1 种基金the Fundamental Research Funds for the Central Universities (Grant No.WK3510000013)the National Supercomputing Center in Tianjin。
文摘A clear microscopic understanding of exchange bias is crucial for its application in magnetic recording, and further progress in this area is desired. Based on the results of our first-principles calculations and Monte Carlo simulations,we present a theoretical proposal for a stacking-dependent exchange bias in two-dimensional compensated van der Waals ferromagnetic/antiferromagnetic bilayer heterostructures. The exchange bias effect emerges in stacking registries that accommodate inhomogeneous interlayer magnetic interactions between the ferromagnetic layer and different spin sublattices of the antiferromagnetic layer. Moreover, the on/off switching and polarity reversal of the exchange bias can be achieved by interlayer sliding, and the strength can be modulated using an external electric field. Our findings push the limits of exchange bias systems to extreme bilayer thickness in two-dimensional van der Waals heterostructures, potentially stimulating new experimental investigations and applications.
基金financially supported by the National High-Tech Research and Development Program of China("863"Program)under Grant No.2002AA302603the National Natural Science Foundation of China under Grant Nos.50071062,59725103,and 50331030.
文摘Exchange interaction plays an important role on magnetic properties of nanocomposite magnets consisting of hard- and soft-magnetic phases. Here the exchange interaction in the Sm-Co/Co (and Fe65Co35) magnetic films was characterized by measuring static (mr(H)) and demagnetized (md(H)) remanence curves. According to conventional method: δm(H)=md(H) - [1 - 2mr(H)], the exchange interaction was evaluated. The switching fields H′p and Hp, at which static (mr(H)) and demagnetized (md(H)) remanence show the fastest change, were identified. The relative ratio η=Hp-H′p/Hp of switching fields H′p and Hp has a linear relationship with the maximum value δmmax of δm(H) curves, proposing an alternative way to characterize the exchange interaction.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.11004005 and 60971019)the Young Scholars Fund of Beijing University of Chemical Technology,China(Grant No.QN0724)
文摘This paper theoretically investigates the effects of crystal field and exchange interaction field on magnetic properties in dysprosium gallium garnet under extreme conditions (low temperatures and high magnetic fields) based on quantum theory. Here, five sets of crystal field parameters are discussed and compared. It demonstrates that, only considering the crystal field effect, the experiments can not be successfully explained. Thus, referring to the molecular field theory, an effective exchange field associated with the Dy-Dy exchange interaction is further taken into account. Under special consideration of crystal field and the exchange interaction field, it obtains an excellent agreement between the theoretical results and experiments, and further confirms that the exchange interaction field between rare-earth ions has great importance to magnetic properties in paramagnetic rare-earth gallium garnets.
文摘In present investigation exchange interactions of Pr_(n+1)Co_(3n+5)B_(2n)-type compounds have been evalu- ated in the light of molecular-field theory. The exchange interactions and ferromagnetism in these compounds are discussed in terms of lattice parameters and interatomic distance between Co atom.
基金Project supported by the National Natural Science Foundation of China(Grant No.11204026)the Fundamental Research Funds for Central Universities of the Ministry of Education of China(Grant No.n130405011)
文摘The dynamic properties of interacting vortex-antivortex pairs in thin film are studied by analytical calculations. An- alytical expressions for the magnetization vector distribution of vortex-antivortex pairs and the trivortex states are given. The magnetic states of the vortices are treated as having rigid structures, i.e., the vortex maintains its spin distribution when moving. The trajectories of the vortex cores are calculated by the Thiele's equation. It is found that the vortex-antivortex pair rotates around each other when they have opposite polarities, however, vortex and antivortex cores move along straight lines when they have the same polarity. The frequency of the rotation decreases with increasing the distance between the two cores of vortex-antivortex pair, and it has a lower value when a third vortex is introduced.
文摘Based on a single ion model, Hamiltonian of the simplest form about magnetocrystalline anisotropy for Tb3+ ion was solved by using the numerical method. The relation between the stabilization energy, crystal field coefficient B20 and the magnetic exchange interaction was studied as temperature approaches to 0 K. The results show that the stabilization energy contributed by Tb3+ is linear with crystal field coefficient B20 approximately, but it is insensitive to the change of magnetic exchange interaction for the strong magnetic substances such as TbCo5, Tb2Co17 and Tb2Fe14B compounds.
基金This work has been supported by the projects No.59725103 and 59871054 of the National Natural Sciences Foundation of China and by the Science and Technology Commnission of Shenyang and Liaoning.Z.J.Guo as aiso indebted to Prof.A.S.Miarkosyan(Russia)for helpful discussions.
文摘Structure, magnetic properties and magnetostriction of Sm0.9Pr0.1(Fe1-xCox)2 compounds have been investigated by means of X-ray diffraction, a.c. initial susceptibility, extracting sample magnetometer, Mossbauer spec-troscopy and standard strain gauge techniques. The lattice parameter a of the MgCu2-type Laves compounds Sm0.9Pr0.1(Fe1-xCox)2 decreases nonlinearly with increasing Co concentration, deviating from the Vegard's law. Curie temperature Tc increases initially from 668 K for x=0 to 694 K for x=0.2 and then decreases to 200 K for x=1.0. The saturation magnetization Ms at temperatures 1.5 K, 77 K and 300 K have the same variation tendency as the composition dependence of Curie temperature, in consistence with rigid-band model. The easy magnetization direction (EMD) of Sm0.9Pr0.1(Fe1-xCox)2 lies along [111] direction in the range x<0.6, and changes to [110] for x=0.8, while Sm0.9Pr0.1Co2 stays in the paramagnetic state at room temperature. The composition dependence of the average hyperfine field,Hhf , demonstrates a similar variation tendency as that of the saturation magnetization Ms and Curie temperature Tc. The spontaneous magnetostricton Am increases with increasing Co content. The saturation magnetostriction λs decreases monotonically with increasing x, which is caused by the increase of magnetostriction constant λ100 with opposite sign to that of Am. A two-sublattice model has been proposed to understand the intermediate region between the [111] and [110] spin configurations, which can also be used to explain the temperature dependence of magnetization.
文摘Taking α-Fe and Nd_2Fe_(14)B grains as example, the grain size dependence of the exchange-coupling interaction and effective anisotropy and also their variations depending on the ratio of magnetically soft and hard grain sizes, D_s∶D_h, were investigated. When grain size D>L_(ex), the grain’s anisotropy is the statistic value of the coupled and uncoupled part. The anisotropy constant of uncoupled part is the common value K_1 and that of coupled part varies with the distance to the grain surface. The effective anisotropy constant between magnetically soft and hard grains, K_(eff), can be expressed as the sum of the products of volume fractions for soft and hard grains, respectively, and the corresponding mean anisotropy constants. The calculation results indicate that the exchange-coupling interaction is enhanced with the reduction of grain size, and the effective anisotropy decreases with reducing grain size and increasing ratio of D_s∶D_h. In order to get high effective anisotropy constant, K_(eff), in composite magnetically soft-hard grains, the hard grain size should be larger than 30 nm and the soft grain size should be about 10 nm.
文摘SmCo/FeCo/SmCo trilayer was deposited with two different thickness configurations for soft phase (FeCo);50 nm/10 nm/50 nm and 50 nm/25 nm/50 nm were deposited on Si (111) substrate and Ta (50 nm) seed layer by RF magnetron sputtering in a pressure, p, of 30 - 35 m Torr. After deposition the films were annealed under Ar atmosphere at temperature T equal to 923 and 973 for different times followed by quenching in water. X-ray diffraction patterns were obtained to identified phase presents and calculate average crystallite size. To study the effect of configuration thickness in soft phases, DC magnetic measurements were carried out;the measurements were done in the temperature interval of 300 - 50 K. Hysteresis loops collected at low temperatures exposed an increment in coercivity with the decrease of T and at same time, presented a “knee” in the second quadrant of the demagnetization curve, which suggests that the inter-layer exchange coupling becomes less effective, being more evident for sample with 50 nm/25 nm/50 nm thickness. Moreover, δM (H) plots were calculated from magnetic measurements at three different temperatures, T, equal to 300, 150 and 50 K, which corroborates that the dipolar interactions became stronger when thickness of soft phases increases. Finally, the thickness effect is attributed to the SmCo5 phase magnetocrystalline anisotropy constant, which is responsible for the exchange coupling length.
基金Supported by Humanistic Social Science Subject of Education Department of Sichuan Province-Research on the Integration Model and Countermeasures of Modern Agriculture and Rural Tourism(IY09-42)
文摘The thesis summarizes the connotation of rural tourism and divides it into six types,including rural sight-seeing,rural body-building activity,rural folk culture,rural experience of farm work,rural business affairs,and study and development.It outlines the theory of sustainable development of rural tourism and points out that what sustainable development of tourism concerns is the coordination of ecology,economy,and society centering on human and nature.On the basis of introducing the connotation of modern agriculture,it divides modern agriculture into six types,including sightseeing agriculture,leisure agriculture,green agriculture,characteristic agriculture,factory agriculture,and three-dimensional agriculture.And by concluding,it obtains the combination model of modern agriculture and rural tourism.Based on the introduction of the above related theories,the thesis discusses the interaction and integration model of the sustainable development of modern agriculture and rural tourism.It emphatically analyzes the integration model of modern agriculture and rural tourism,including pastoral agriculture tourism model(sightseeing village,leisure farm,citizen farm),and science education tourism model(agricultural science and technology education base,tourism and leisure education agricultural park,children's,agricultural education base,agricultural exposition).Based on the interaction and integration relationship between modern agriculture and rural tourism,the thesis puts forward corresponding countermeasures so as to promote their positive development and realize the maximum of ecological,social and economic benefits.
文摘The temperature dependence of lattice parameters a and c of intermetallic compounds RMn 2Ge 2(R=La, Sm and Gd)were measured in the temperature range of 10800 K by using the X-ray diffractometer . It is found that the high temperature magnetic transitions of Mn-subsystem in light rare earth compounds from paramagnetic to antiferromagnetic state accompany the negative magnetoelastic anomalies of lattice parameters c, where a does not change. This indicates that the antiferromagnetic component of intralayer Mn-Mn exchange coupling is correlated with lattice constant c. The low temperature first order ferromagnetism→antiferromagnetism transitions(or antiferromagnetism→ferromagnetism transition) of Mn-subsystem in SmMn 2Ge 2 and GdMn 2Ge 2 accompany the abruptly decrease(or increase) of lattice parameter a, and Δa/a≈0.15%. This demonstrates that the interlayer Mn-Mn exchange interaction is very sensitive to the intralayer Mn-Mn distance. The critical value of lattice constant a k, at which the interlayer Mn-Mn coupling changes its sign, is 4.044 5×10 -10 m. Based on the molecular field model of exchange interaction the magnetic curves of GdMn 2Ge 2 single crystal at different temperatures were calculated and a good agreement with experimental data had gotten. The Gd-Gd, Gd-Mn, intralayer Mn-Mn and interlayer Mn-Mn exchange coupling parameters were estimated.
基金Supported by the Natural Science Foundation of Guangdong Province (No. 990630) and the State Major Basic Research Development Program (No. G20000263).
文摘A method for incorporation of controlling the heat exchanger networks with or without splits is proposed by integrating mathemati-cal programming and knowledge engineering. The simultaneous optimal mathematical model is established. This method can be practically used in the integration of large-scale heat exchanger networks, not only to synthesize automatically but also to satisfy the requirement of struc-tural controllability with more objective human intervention.
基金Project supported by the National Natural Science Foundation of China (Grant No. 10874049)the State Key Program for Basic Research of China (Grant No. 2007CB925204).
文摘By using the traveling wave method, the solutions of the elliptic function wave and the solitary wave are obtained in a ferromagnetic spin chain with a biquadratic exchange interaction, a single ion anisotropic interaction and an anisotropic nearest neighbour interaction. The effects of the biquadratic exchange interaction and the single ion anisotropic interaction on the properties (width, peak and stability) of the soliton are investigated. It is also found that the effects vary with the strengths of these interactions.
基金the National Science Foundation ofChina(No.4 97762 80)
文摘Synchronous or quasi-synchronous stereoscopic sea-ice-air comprehensive observation was conducted during the First China Arctic Expedition in summer of 1999. Based on these data, the role of sea ice in sea-air exchange was studied. The study shows that the kinds, distribution and thickness of sea ice and their variation significantly influence the air-sea heat exchange. In floating ice area, the heat momentum transferred from ocean to atmosphere is in form of latent heat; latent heat flux is closely related to floating ice concentration; if floating ice is less, the heat flux would be larger. Latent heat flux is about 21 23 6 W·m -2, which is greater than sensible heat flux. On ice field or giant floating ice, heat momentum transferred from atmosphere to sea ice or snow surface is in form of sensible heat. In the floating ice area or polynya, sea-air exchange is the most active, and also the most sensible for climate. Also this area is the most important condition for the creation of Arctic vapor fog. The heat exchange of a large-scale vapor fog process of about 500000 km 2 on Aug. 21 22,1999 was calculated; the heat momentum transferred from ocean to air was about 14 8×10 9 kW. There are various kinds of sea fog, radiation fog, vapor fog and advection fog, forming in the Arctic Ocean in summer. One important cause is the existence of sea ice and its resultant complexity of both underlying surface and sea-air exchange.
基金Supported by the National Key Basic Research Program of China(2012CB720500)
文摘In this paper heat exchange coefficient and separation efficiency of an annular structured internal heat-integrated distillation column(HIDi C) were experimentally measured. About 50% heat of the inner column could be transferred to the outer column. The overall heat exchange coefficient decreased with an increase in pressure ratio of the inner column and the outer column, but was little affected by the F-factor. The increase of the pressure ratio decreased obviously the separation efficiency of the outer column but had little effect on that of the inner column.
文摘Effects of the intergrain exchange interaction on magnetic properties of nanocomposite magnets were investigated by using the computer simulation based on the micromagnetic theory. The simulation was carried out under the assumptions that the strength of the intergrain exchange interaction is weaker than that of the intragrain exchange interaction, that inhomogeneous nanostructures result in the distribution of the strength of the intergrain exchange interaction, and that there exists nonmagnetic intergranular phase (NMIP) between grain boundaries. The distribution of the strength of the intergrain exchange interaction was simulated by the lognormal distribution with the standard deviation of σ.The calculations for Nd 2Fe 14B/α-Fe nanocomposite magnets reveal that a suitably weak intergrain exchange interaction and small grain size enable us to improve magnetic properties. It is also found that a Nd 2Fe 14B/α-Fe nanocomposite magnet has a potential of a (BH) max value exceeding 300 kJ·m -3. On the other hand, the calculations for Nd 2Fe 14B/Fe 3B nanocomposite magnets reveal that the distribution of the strength of the intergrain exchange interaction deteriorates magnetic properties significantly. Particularly, this tendency is remarkable, when the grain size L is larger than its optimum value, 11 nm. The existence of nonmagnetic boundary layers accelerats this tendency. At σ=0.2, the calculated demagnetization curve for the model magnet composed of Nd 2Fe 14B(36%)/Fe 3B(54%)/NMIP(10%) (Valume fraction) grains (L=15 nm) agrees with that obtained experimentally for a Nd 2Fe 14B/Fe 3B nanocomposite magnet. These results suggest importance of refinement of grain size, suppression of a nonmagnetic intergranular phase, and preparation of homogeneous nanostructure for superior magnetic properties.