Excitation-emission matrix fluorescence spectroscopy (EEM) has been widely used to elucidate the origin and structure of humic substances in natural environments. Due to its high sensitivity, good selectivity and non-...Excitation-emission matrix fluorescence spectroscopy (EEM) has been widely used to elucidate the origin and structure of humic substances in natural environments. Due to its high sensitivity, good selectivity and non-destructive advantage, the EEM was applied to characterizing a commercial Fluka humic acid (FHA). The results showed that the EEMs of FHA has several Ex/Em peaks. Ionic strength (0- 0.05 mol/L KClO 4) exerted little effect on the fluorescence properties of FHA, while the concentrations (5-100 mg/L) of FHA and pH (2-12) had significant effects. A red shift in the longer wavelength peak region was observed when the concentrations or pH values increased. The fluorescence intensity increased with increasing pH, but slightly decreased in the case of pH= 5.0. The protonation constants (lgK’ HL) of peak B were calculated to be 3.57 and 3.13, indicating that peak B was due to carboxyl groups. The r (A/B) values range from 0.61 to 2.59. A strong linear relationship between r (A/B) and pH was also observed. This indicates that the fluorescence peaks A and B posses similar inherent fluorescence characteristics.展开更多
AIM: To investigate the autofluorescence spectroscopic differences in normal and adenomatous coionic tissues and to determine the optimal excitation wavelengths for subsequent study and clinical application. METHODS: ...AIM: To investigate the autofluorescence spectroscopic differences in normal and adenomatous coionic tissues and to determine the optimal excitation wavelengths for subsequent study and clinical application. METHODS: Normal and adenomatous coionic tissues were obtained from patients during surgery. A FL/FS920 combined TCSPC spectrofluorimeter and a lifetime spectrometer system were used for fluorescence measurement. Fluorescence excitation wavelengths varying from 260 to 540 nm were used to induce the autofluorescence spectra, and the corresponding emission spectra were recorded from a range starting 20 nm above the excitation wavelength and extending to 800 nm. Emission spectra were assembled into a three-dimensional fluorescence spectroscopy and an excitation-emission matrix (EEM) to exploit endogenous fluorophores and diagnostic information. Then emission spectra of normal and adenomatous coionic tissues at certain excitation wavelengths were compared to determine the optimal excitation wavelengths for diagnosis of coionic cancer. RESULTS: When compared to normal tissues, low NAD (P)H and FAD, but high amino acids and endogenous phorphyrins of protoporphyrin IX characterized the high-grade malignant coionic tissues. The optimal excitation wavelengths for diagnosis of coionic cancer were about 340, 380, 460, and 540 nm. CONCLUSION: Significant differences in autofluorescence peaks and its intensities can be observed in normal and adenomatous coionic tissues. Autofluorescence EEMs are able to identify coionic tissues.展开更多
The membrane bioreactor(MBR)technology is a rising star for wastewater treatment.The pollutant elimination and membrane fouling performances of MBRs are essentially related to the dissolved organic matter(DOM)in the s...The membrane bioreactor(MBR)technology is a rising star for wastewater treatment.The pollutant elimination and membrane fouling performances of MBRs are essentially related to the dissolved organic matter(DOM)in the system.Three-dimensional excitation-emission matrix(3D-EEM)fluorescence spectroscopy,a powerful tool for the rapid and sensitive characterization of DOM,has been extensively applied in MBR studies;however,only a limited portion of the EEM fingerprinting information was utilized.This paper revisits the principles and methods of fluorescence EEM,and reviews the recent progress in applying EEM to characterize DOM in MBR studies.We systematically introduced the information extracted from EEM by considering the fluorescence peak location/intensity,wavelength regional distribution,and spectral deconvolution(giving fluorescent component loadings/scores),and discussed how to use the information to interpret the chemical compositions,physiochemical properties,biological activities,membrane retention/fouling behaviors,and migration/transformation fates of DOM in MBR systems.In addition to conventional EEM indicators,novel fluorescent parameters are summarized for potential use,including quantum yield,Stokes shift,excited energy state,and fluorescence lifetime.The current limitations of EEM-based DOM characterization are also discussed,with possible measures proposed to improve applications in MBR monitoring.展开更多
The autofluorescence spectroscopy of biologi- cal tissues is a powerful tool for non-invasive detection of tissue pathologies and evaluation of any biochemical and morphological changes arising during the lesions' gr...The autofluorescence spectroscopy of biologi- cal tissues is a powerful tool for non-invasive detection of tissue pathologies and evaluation of any biochemical and morphological changes arising during the lesions' growth. To obtain a full picture of the whole set of endogenous fluorophores appearing in the gastrointestinal (GI) tumors investigated, the technique of excitation-emission matrix (EEM) development was applied in a broad spectral region, covering the ultraviolet and visible spectral ranges. We could thus address a set of diagnostically-important chromophores and their alterations during tumor develop- ment, namely, collagen, elastin, nicotinamide adenine dinucleotide (NADH), flavins, porphyrins, while hemo- globin's absorption influence on the spectra obtained could be evaluated as well. Comparisons are presented between EEM data of normal mucosae, benign polyps and malignant carcinoma, and the origins are determined of the fluorescence signals forming these matrices.展开更多
文摘Excitation-emission matrix fluorescence spectroscopy (EEM) has been widely used to elucidate the origin and structure of humic substances in natural environments. Due to its high sensitivity, good selectivity and non-destructive advantage, the EEM was applied to characterizing a commercial Fluka humic acid (FHA). The results showed that the EEMs of FHA has several Ex/Em peaks. Ionic strength (0- 0.05 mol/L KClO 4) exerted little effect on the fluorescence properties of FHA, while the concentrations (5-100 mg/L) of FHA and pH (2-12) had significant effects. A red shift in the longer wavelength peak region was observed when the concentrations or pH values increased. The fluorescence intensity increased with increasing pH, but slightly decreased in the case of pH= 5.0. The protonation constants (lgK’ HL) of peak B were calculated to be 3.57 and 3.13, indicating that peak B was due to carboxyl groups. The r (A/B) values range from 0.61 to 2.59. A strong linear relationship between r (A/B) and pH was also observed. This indicates that the fluorescence peaks A and B posses similar inherent fluorescence characteristics.
基金Supported by the Natural Science Foundation of Fujian Province, No. A0310018 and No. 2002F008the Scientific Research Program of Fujian Province, No. JA03041
文摘AIM: To investigate the autofluorescence spectroscopic differences in normal and adenomatous coionic tissues and to determine the optimal excitation wavelengths for subsequent study and clinical application. METHODS: Normal and adenomatous coionic tissues were obtained from patients during surgery. A FL/FS920 combined TCSPC spectrofluorimeter and a lifetime spectrometer system were used for fluorescence measurement. Fluorescence excitation wavelengths varying from 260 to 540 nm were used to induce the autofluorescence spectra, and the corresponding emission spectra were recorded from a range starting 20 nm above the excitation wavelength and extending to 800 nm. Emission spectra were assembled into a three-dimensional fluorescence spectroscopy and an excitation-emission matrix (EEM) to exploit endogenous fluorophores and diagnostic information. Then emission spectra of normal and adenomatous coionic tissues at certain excitation wavelengths were compared to determine the optimal excitation wavelengths for diagnosis of coionic cancer. RESULTS: When compared to normal tissues, low NAD (P)H and FAD, but high amino acids and endogenous phorphyrins of protoporphyrin IX characterized the high-grade malignant coionic tissues. The optimal excitation wavelengths for diagnosis of coionic cancer were about 340, 380, 460, and 540 nm. CONCLUSION: Significant differences in autofluorescence peaks and its intensities can be observed in normal and adenomatous coionic tissues. Autofluorescence EEMs are able to identify coionic tissues.
基金the National Natural Science Foundation of China(No.51778599)the Beijing Natural Science Foundation(No.LI82044)+1 种基金the CAS Strategic Priority Research Programmer(A)(No.XDA20050103)the Youth Innovation Promotion Association CAS(No.110500EA62)。
文摘The membrane bioreactor(MBR)technology is a rising star for wastewater treatment.The pollutant elimination and membrane fouling performances of MBRs are essentially related to the dissolved organic matter(DOM)in the system.Three-dimensional excitation-emission matrix(3D-EEM)fluorescence spectroscopy,a powerful tool for the rapid and sensitive characterization of DOM,has been extensively applied in MBR studies;however,only a limited portion of the EEM fingerprinting information was utilized.This paper revisits the principles and methods of fluorescence EEM,and reviews the recent progress in applying EEM to characterize DOM in MBR studies.We systematically introduced the information extracted from EEM by considering the fluorescence peak location/intensity,wavelength regional distribution,and spectral deconvolution(giving fluorescent component loadings/scores),and discussed how to use the information to interpret the chemical compositions,physiochemical properties,biological activities,membrane retention/fouling behaviors,and migration/transformation fates of DOM in MBR systems.In addition to conventional EEM indicators,novel fluorescent parameters are summarized for potential use,including quantum yield,Stokes shift,excited energy state,and fluorescence lifetime.The current limitations of EEM-based DOM characterization are also discussed,with possible measures proposed to improve applications in MBR monitoring.
文摘The autofluorescence spectroscopy of biologi- cal tissues is a powerful tool for non-invasive detection of tissue pathologies and evaluation of any biochemical and morphological changes arising during the lesions' growth. To obtain a full picture of the whole set of endogenous fluorophores appearing in the gastrointestinal (GI) tumors investigated, the technique of excitation-emission matrix (EEM) development was applied in a broad spectral region, covering the ultraviolet and visible spectral ranges. We could thus address a set of diagnostically-important chromophores and their alterations during tumor develop- ment, namely, collagen, elastin, nicotinamide adenine dinucleotide (NADH), flavins, porphyrins, while hemo- globin's absorption influence on the spectra obtained could be evaluated as well. Comparisons are presented between EEM data of normal mucosae, benign polyps and malignant carcinoma, and the origins are determined of the fluorescence signals forming these matrices.