A self-consistent-field—configuration interaction(SCF-CI)procedure of studying highly excited vibrational states of bent triatomic molecules is suggested and its application to O_3 is investigated.
A new method of corrosion-resistant coating of technical iron is presented. Processing by vibrationally excited hydrogen molecules of the iron surface covered with oxide film of α-Fe2 03 results in modification of su...A new method of corrosion-resistant coating of technical iron is presented. Processing by vibrationally excited hydrogen molecules of the iron surface covered with oxide film of α-Fe2 03 results in modification of surface by creating a film of amorphous iron on it. The presence of iron films with crystalline and amorphous phases, having the different Fermi levels, leads to formation of potential differences between them. This potential difference is opposite to the external electric field, resulting in decrease of anode current and increase of corrosion resistance.展开更多
To research the correlation between vibrational energy transition rates and acoustic relaxation processes in excitable gases, the vibrational relaxation theory provided by Tanczos [J. Chem. Phy3. 25, 439 (1956)] is ...To research the correlation between vibrational energy transition rates and acoustic relaxation processes in excitable gases, the vibrational relaxation theory provided by Tanczos [J. Chem. Phy3. 25, 439 (1956)] is applied to calculate the energy transition rates of Vibrational- Vibrational (V-V) and Vibrational-Translational (V-T) energy transfer in gas mixtures. The results of calculation for the multi-relaxation processes in various gas mixtures, consisting of carbon dioxide, methane, chlorine, nitrogen, and oxygen at room temperature, demonstrate that the acoustic energy stagnated in every vibrational mode is coupled with each other through V-V energy exchanges. The vibrational excitation energy will relax through the V-T de-excitation path of the lowest mode because of its fastest V-T transition rate, resulting in that only one absorption peak can be measured for most of excitable gas mixtures. Thus, an effective model is provided to analyze how the vibrational energy transition rates affect the characteristics of acoustic relaxation processes and acoustic propagation in excitable gas mixtures.展开更多
Quantum dynamical calculations for the IR-multiphoton excitation of H_2O,D_2O and T_2O are presented using a generalized Hamiltonian for XY_2 molecules.The energy spectra obtained from this Hamiltonian are in good agr...Quantum dynamical calculations for the IR-multiphoton excitation of H_2O,D_2O and T_2O are presented using a generalized Hamiltonian for XY_2 molecules.The energy spectra obtained from this Hamiltonian are in good agreement with those of the experiments.The long time average of the transition probabilities and the isotopic effects are discussed in detail,展开更多
文摘A self-consistent-field—configuration interaction(SCF-CI)procedure of studying highly excited vibrational states of bent triatomic molecules is suggested and its application to O_3 is investigated.
文摘A new method of corrosion-resistant coating of technical iron is presented. Processing by vibrationally excited hydrogen molecules of the iron surface covered with oxide film of α-Fe2 03 results in modification of surface by creating a film of amorphous iron on it. The presence of iron films with crystalline and amorphous phases, having the different Fermi levels, leads to formation of potential differences between them. This potential difference is opposite to the external electric field, resulting in decrease of anode current and increase of corrosion resistance.
基金supported by the National Natural Science Foundation of China(61461008,61371139,61571201,61540051)the China Scholarship Council Project(201708525058)+1 种基金the National Science Foundation of Guizhou Province,China(Qian Ke He J Zi[2015]2065),Qian Ke He LH Zi[2014]7361)the Recruitment Program of Guizhou Institute of Technology(XJGC20140601,XJGC20150107)
文摘To research the correlation between vibrational energy transition rates and acoustic relaxation processes in excitable gases, the vibrational relaxation theory provided by Tanczos [J. Chem. Phy3. 25, 439 (1956)] is applied to calculate the energy transition rates of Vibrational- Vibrational (V-V) and Vibrational-Translational (V-T) energy transfer in gas mixtures. The results of calculation for the multi-relaxation processes in various gas mixtures, consisting of carbon dioxide, methane, chlorine, nitrogen, and oxygen at room temperature, demonstrate that the acoustic energy stagnated in every vibrational mode is coupled with each other through V-V energy exchanges. The vibrational excitation energy will relax through the V-T de-excitation path of the lowest mode because of its fastest V-T transition rate, resulting in that only one absorption peak can be measured for most of excitable gas mixtures. Thus, an effective model is provided to analyze how the vibrational energy transition rates affect the characteristics of acoustic relaxation processes and acoustic propagation in excitable gas mixtures.
文摘Quantum dynamical calculations for the IR-multiphoton excitation of H_2O,D_2O and T_2O are presented using a generalized Hamiltonian for XY_2 molecules.The energy spectra obtained from this Hamiltonian are in good agreement with those of the experiments.The long time average of the transition probabilities and the isotopic effects are discussed in detail,