Heat denaturation is an important technique in the study of the structure and function of photosynthetic proteins. Heat denaturation of photosystem II (PSII) membrane was studied using circular dichroism (CD) spect...Heat denaturation is an important technique in the study of the structure and function of photosynthetic proteins. Heat denaturation of photosystem II (PSII) membrane was studied using circular dichroism (CD) spectroscopy, differential scanning calorimetry (DSC) and oxygen electrode. Complete loss of oxygen evolving activity of the PSII membrane was observed at temperatures below 45℃ . The decrease of excitonic interaction between chlorophyll molecules occurred more rapidly than the change of the protein secondary structure of the PSII membrane at temperatures above 45℃ . The results indicate that the protein secondary structure of the membrane proteins in PSII membranes is more stable than the excitonic interaction between chlorophyll molecules during heat denaturation.展开更多
The electron and heavy hole energy levels of two vertically coupled In As hemispherical quantum dots/wetting layers embedded in a Ga As barrier are calculated numerically. As the radius increases, the electronic energ...The electron and heavy hole energy levels of two vertically coupled In As hemispherical quantum dots/wetting layers embedded in a Ga As barrier are calculated numerically. As the radius increases, the electronic energies increase for the small base radii and decrease for the larger ones. The energies decrease as the dot height increases. The intersubband and interband transitions of the system are also studied. For both, a spectral peak position shift to lower energies is seen due to the vertical coupling of dots. The interband transition energy decreases as the dot size increases, decreases for the dot shapes with larger heights, and reaches a minimum for coupled semisphere dots.展开更多
基金Supported by the State Key Basic Research and Development Plan (No.G19980 10 10 0 ) the National Natural Science Foundation of China(No.3 9890 3 90 )
文摘Heat denaturation is an important technique in the study of the structure and function of photosynthetic proteins. Heat denaturation of photosystem II (PSII) membrane was studied using circular dichroism (CD) spectroscopy, differential scanning calorimetry (DSC) and oxygen electrode. Complete loss of oxygen evolving activity of the PSII membrane was observed at temperatures below 45℃ . The decrease of excitonic interaction between chlorophyll molecules occurred more rapidly than the change of the protein secondary structure of the PSII membrane at temperatures above 45℃ . The results indicate that the protein secondary structure of the membrane proteins in PSII membranes is more stable than the excitonic interaction between chlorophyll molecules during heat denaturation.
文摘The electron and heavy hole energy levels of two vertically coupled In As hemispherical quantum dots/wetting layers embedded in a Ga As barrier are calculated numerically. As the radius increases, the electronic energies increase for the small base radii and decrease for the larger ones. The energies decrease as the dot height increases. The intersubband and interband transitions of the system are also studied. For both, a spectral peak position shift to lower energies is seen due to the vertical coupling of dots. The interband transition energy decreases as the dot size increases, decreases for the dot shapes with larger heights, and reaches a minimum for coupled semisphere dots.