To screen patients with early cervical lesions by analyzing the infection of high-risk Human papillomavirus (HR-HPV). Research Methods: The cervical exfoliated cell specimens and their clinical data were collected. Th...To screen patients with early cervical lesions by analyzing the infection of high-risk Human papillomavirus (HR-HPV). Research Methods: The cervical exfoliated cell specimens and their clinical data were collected. The HPV infection types of the collected specimens were detected by fluorescence quantitative PCR, and the correlation between HPV infection and clinicopathological features was analyzed statistically. Results: 725 cases were HR-HPV positive from 2605 cases, including 15 high-risk types of HPV16, 18, 31, 33, 35, 39, 45, 51, 52, 53, 56, 58, 59, 66, 68. Different histological types ranged from NILM to HSIL, and the positive rate of HPV showed an increasing trend with the aggravation of cervical lesions. Conclusion: The positive rate of 15 high-risk HPV types in the collected specimens was 27.8%. Patients with early cervical lesions could be screened for 15 high-risk HPV infection types.展开更多
AIM: To investigate the effect of stem cells from human exfoliated deciduous teeth(SHED) transplanted for bone regeneration in the dog mandibular defect.METHODS: In this prospective comparative study, SHEDs had been i...AIM: To investigate the effect of stem cells from human exfoliated deciduous teeth(SHED) transplanted for bone regeneration in the dog mandibular defect.METHODS: In this prospective comparative study, SHEDs had been isolated 5 years ago from human exfoliated deciduous teeth. The undifferentiated stem cells were seeded into mandibular bone through-andthrough defects of 4 dogs. Similar defects in control group were filled with cell-free collagen scaffold. After 12 wk, biopsies were taken and morphometric analysis was performed. The percentage of new bone formation and foreign body reaction were measured in each case. The data were subject to statistical analysis using the Mann-Whitney U and Kruskalwalis statistical tests. Differences at P < 0.05 was considered as significant level.RESULTS: There were no significant differences between control and SHED-seeded groups in connective tissue(P = 0.248), woven bone(P = 0.248) and compact bone(P = 0.082). There were not any side effects in transplanted SHED group such as teratoma or malignancy and abnormalities in this period.CONCLUSION: SHEDs which had been isolated and characterized 5 years ago and stored with cryopreservation banking were capable of proliferation and osteogenesis after 5 years, and no immune response was observed after three months of seeded SHEDs.展开更多
Electrochemically exfoliated graphene(EEG)is a kind of high-quality graphene with few oxygen-containing functional groups and defects on the surface,and thereby is more suitable as catalyst support than other carbon m...Electrochemically exfoliated graphene(EEG)is a kind of high-quality graphene with few oxygen-containing functional groups and defects on the surface,and thereby is more suitable as catalyst support than other carbon materials such as extensively used reduced graphene oxide(rGO).However,it is difficult to grow functional materials on EEG due to its inert surface.In this work,ultra-small Pt nanocrystals(~2.6 nm)are successfully formed on EEG and show better electrocatalytic activity towards methanol oxidation than Pt catalysts on r GO.The outstanding catalytic properties of Pt catalysts on EEG can be attributed to the fast electron transfer through EEG and high quality of Pt catalysts such as small grain size,high dispersibility and low oxidation ratio.In addition,SnO2 nanocrystals are controllably generated around Pt catalysts on EEG to raise the poison tolerance of Pt catalysts through using glycine as a linker.Owing to its outstanding properties such as high electrical conductivity and mechanical strength,EEG is expected to be widely used as a novel support for catalysts.展开更多
By loading nanometer anatase onto exfoliated graphite with the sol-gel method, exfoliated graphite-TiO2 composite (EG-TiO2) can be prepared, which can adsorb oil and can also degrade oil. In a technologic condition ...By loading nanometer anatase onto exfoliated graphite with the sol-gel method, exfoliated graphite-TiO2 composite (EG-TiO2) can be prepared, which can adsorb oil and can also degrade oil. In a technologic condition for preparing EG-TiO2, the impregnated number of times is the most important factor to influence oil-adsorbing capability, that is, when the impregnated number of times increases, the amount of saturation-adsorbed oil decreases. The study of EG-TiO2 photocatalytic degradation of machine oil based on the weight-loss method and infrared spectrum method indicates that EG-TiO2 has obvious effect of photocatalytic degradation for machine oil. Its performance is superior to pure nanometer TiO2 powder because nanometer TiO2 in EG-TiO2 has three-dimension laminar structure and comparatively high adsorption capability.展开更多
BACKGROUND Autoimmune hepatitis is a serious autoimmune liver disease that threatens human health worldwide,which emphasizes the urgent need to identify novel treatments.Stem cells from human exfoliated deciduous teet...BACKGROUND Autoimmune hepatitis is a serious autoimmune liver disease that threatens human health worldwide,which emphasizes the urgent need to identify novel treatments.Stem cells from human exfoliated deciduous teeth(SHED),which are easy to obtain in a non-invasive manner,show pronounced proliferative and immunomodulatory capacities.AIM To investigate the protective effects of SHED on concanavalin A(ConA)-induced hepatitis in mice,and to elucidate the associated regulatory mechanisms.METHODS We used a ConA-induced acute hepatitis mouse model and an in vitro co-culture system to study the protective effects of SHED on ConA-induced autoimmune hepatitis,as well as the associated underlying mechanisms.RESULTS SHED infusion could prevent aberrant histopathological liver architecture caused by ConA-induced infiltration of CD3+,CD4+,tumor necrosis-alpha+,and interferon-gamma+inflammatory cells.Alanine aminotransferase and aspartate aminotransferase were significantly elevated in hepatitis mice.SHED infusion could therefore block ConA-induced alanine aminotransferase and aspartate aminotransferase elevations.Mechanistically,ConA upregulated tumor necrosisalpha and interferon-gamma expression,which was activated by the nuclear factor-kappa B pathway to induce hepatocyte apoptosis,resulting in acute liver injury.SHED administration protected hepatocytes from ConA-induced apoptosis.CONCLUSION SHED alleviates ConA-induced acute liver injury via inhibition of hepatocyte apoptosis mediated by the nuclear factor-kappa B pathway.Our findings could provide a potential treatment strategy for hepatitis.展开更多
Exfoliated graphite (EG) is selected as a new kind of sorbent to sorb heavy oil spilled. In order to make use of EG more effectively, some basic experiments are performed to investigate its sorption properties, i.e...Exfoliated graphite (EG) is selected as a new kind of sorbent to sorb heavy oil spilled. In order to make use of EG more effectively, some basic experiments are performed to investigate its sorption properties, i.e. , specific sorption, height of saturation layer, sorption time constant. In the present experiments, A grade heavy oil is employed as a standard sorbate. It is concluded that 1) under the condition that the area of solid (filter bottom) liquid (heavy oil) interface is a constant, specific sorption usually decreases when the amount of EG filled or the apparent bulk density increase; however, the specific sorption initially increases when the apparent bulk density is too low and the amount of EG filled is too much; 2) under the condition that the apparent bulk density of EG filled is a constant, the sorption time constant tends to increase when the amount of EG filled increases; however, for a constant amount of EG filled, the sorption time constant will decrease when the apparent bulk density increases.展开更多
Exfoliated graphite was prepared by chemical route and then further subjected to thermal oxidation and sonication for size reduction and increased interlayer spacing in natural flake graphite. Exfoliated graphite/ABS ...Exfoliated graphite was prepared by chemical route and then further subjected to thermal oxidation and sonication for size reduction and increased interlayer spacing in natural flake graphite. Exfoliated graphite/ABS composites were pre-pared with varying filler concentration by solution casting method. Exfoliated graphite and composites were character-ised by scanning electron microscopy and energy dispersive X-ray analysis, Fourier transform infrared spectroscopy and X-ray diffractometry techniques. After thermal exfoliation significant peak of graphite at 2? = 26.4? disappeared completely, confirming successful exfoliation of graphite. SEM images revealed homogeneous dispersion of exfoliated graphite in the matrix and EDAX confirmed successful reduction of graphite oxide.展开更多
In this study, high-density polyethylene (HDPE)/exfoliated graphite nanoplatelet (xGnP) composites reinforced with a 2 wt.% concentration of nano-magnesia (n-MgO) were fabricated using an injection moulding machine. T...In this study, high-density polyethylene (HDPE)/exfoliated graphite nanoplatelet (xGnP) composites reinforced with a 2 wt.% concentration of nano-magnesia (n-MgO) were fabricated using an injection moulding machine. The thermal properties and morphological structures of the composites were investigated. The XRD results showed the peaks of xGnP and n-MgO, where the intensity of the xGnP peaks became stronger with adding increasing amounts of xGnP into the polymermatrix. In terms of morphology, some agglomeration of particles was observed within the matrix, and the agglomeration decreased the thermal properties of the composites. The nanocomposites showed less thermal stability than the pristine polymer. The reduction in the onset temperature compared to that of neat HDPE was attributed to less adhesion between the fillers and the matrix. In addition, the crystallinity was reduced by the addition of fillers.展开更多
In the present investigation the possibility of using exfoliated graphite nanoplatelets (xGnP) as reinforcement in order to enhance the mechanical properties of Cu-based metal matrix composites is explored. Cu-based m...In the present investigation the possibility of using exfoliated graphite nanoplatelets (xGnP) as reinforcement in order to enhance the mechanical properties of Cu-based metal matrix composites is explored. Cu-based metal matrix composites reinforced with different amounts of xGnP were fabricated by powder metallurgy route. The microstructure, sliding wear behaviour and mechanical properties of the Cu-xGnP composites were investigated. xGnP has been synthesized from the graphite intercalation compounds (GIC) through rapid evaporation of the intercalant at an elevated temperature. The thermally exfoliated graphite was later sonicated for a period of 5 h in acetone in order to achieve further exfoliation. The xGnP synthesized was characterized using SEM, HRTEM, X-ray diffraction, Raman spectroscopy and Fourier transform infrared spectroscopy. The Cu and xGnP powder mixtures were consolidated under a load of 565 MPa followed by sintering at 850°C for 2 h in inert atmosphere. Cu-1, 2, 3 and 5 wt% xGnP composites were developed. Results of the wear test show that there is a significant improvement in the wear resistance of the composites up to addition of 2 wt% of xGnP. Hardness, tensile strength and strain at failure of the various Cu-xGnP composites also show improvement upto the addition of 2 wt% xGnP beyond which there is a decrease in these properties. The density of the composites decreases with the addition of higher wt% of xGnP although addition of higher wt% of xGnP leads to higher sinterability and densification of the composites, resulting in higher relative density values. The nature of fracture in the pure Cu as well as the various Cu-xGnP composites was found to be ductile. Nanoplatelets of graphite were found firmly embedded in the Cu matrix in case of Cu-xGnP composites containing low wt% of xGnP.展开更多
Ultrathin MoS2 nanosheets were prepared in high yield using a facile and effective hydrothermal intercalation and exfoliation route. The products were characterized in detail using X-ray diffraction, scanning electron...Ultrathin MoS2 nanosheets were prepared in high yield using a facile and effective hydrothermal intercalation and exfoliation route. The products were characterized in detail using X-ray diffraction, scanning electron microscopy, transmission electron microscopy and Raman spectroscopy. The results show that the high yield of MoS2 nanosheets with good quality was successfully achieved and the dimensions of the immense nanosheets reached 1 μm-2/zm. As anode material for Li-ion batteries, the as-prepared MoS2 nanosheets electrodes exhibited a good initial capacity of 1190 mAh.g-l and excellent cyclic stability at constant current density of 50 mA.g-1. After 50 cycles, it still delivered reversibly sustained high capacities of 750 mAh.g-1.展开更多
The effects of ethylene vinyl acetate copelymer (EVA) as a compatibilizer on the dispersion of organically modified montmorillonite(org-MMT) into low-density polyethylene(LDPE) during melt extrusion compounding ...The effects of ethylene vinyl acetate copelymer (EVA) as a compatibilizer on the dispersion of organically modified montmorillonite(org-MMT) into low-density polyethylene(LDPE) during melt extrusion compounding were studied. The X-ray diffraction patterns reveal that as compared with LDPE, EVA can intercalate more easily into the interlay gallery of org-MMT when the composites contain a low org-MMT content. Exfoliated LDPE/org-MMT nanocompesites in the presence of an EVA compatibilizer could be prepared by using a two-step melt compounding technique with a twin-screw extruder.展开更多
Functionalized exfoliated graphene oxide (EGO) for supercapacitor electrodes have been synthesized by simple chemical methods from the exfoliated graphite (EG) as precursor. Structural and morphological characterizati...Functionalized exfoliated graphene oxide (EGO) for supercapacitor electrodes have been synthesized by simple chemical methods from the exfoliated graphite (EG) as precursor. Structural and morphological characterizations of EGO have been carried out using X-Ray Diffraction (XRD), Scanning Electron Microscopy (SEM), FTIR and Raman spectroscopy. Electrochemical performance of these electrodes has been investigated using cyclic voltammetry, galvanostatic charge-discharge, and electrochemical impedance spectroscopy. The fabricated supercapacitor gave a specific capacitance of 146 Fg-1 and energy density of 20 Wh·kg-1 for a highly oxidized sample with more functional groups compared to pure, lower level oxidized and reduced samples. The single and multi layered graphene oxide sheets produced by this method have a lower degree of agglomeration. We found that the graphene oxide with functional oxygen groups of quinine type enhances the capacitance compared to other oxygen functional groups.展开更多
The commercial graphite(CG)is the conventional anode material for lithium ion batteries(LIBs)due to its low delithiation voltage plateau(below 0.5 V)and extraordinary durability.Nevertheless,the further promotion of e...The commercial graphite(CG)is the conventional anode material for lithium ion batteries(LIBs)due to its low delithiation voltage plateau(below 0.5 V)and extraordinary durability.Nevertheless,the further promotion of energy density of LIBs is restricted by the limited capacity below 0.5 V of CG.Here,based on the supercritical CO2 exfoliation technique,the production of multi-layered graphene(MLG)is achieved from the pilot scale production line.The great merit of the exfoliated MLG anode is that the voltage plateau below 0.5 V is broadened obviously as compared to those of natural graphite and CG.Additionally,no obvious lithium dendrites are observed for MLG during the lithiation process.The large delithiation capacity under the low voltage plateau of MLG is mainly benefited from the combination of Li intercalation and boundary storage mechanism,which is further confirmed by the density functional theory calculations.The LiFePO4/MLG full cell can afford the satisfactory electrochemical property with respect to the capacity,energy density and ultralong cycling stability(90%capacity retention after 500 cycles at 2 C),significantly better than that of LiFePO4/CG.Besides,this developed technique not only dedicates to producing the high-performance anode for LIBs but also opens a door for the mass production of MLG in the industrial scale.展开更多
Graphene Oxide/Multilayer-Graphene (GO-MG) flakes were obtained using an electrochemically exfoliated graphite (GR) electrode from secondary steel-making industry performed in a two-electrode system using tungsten as ...Graphene Oxide/Multilayer-Graphene (GO-MG) flakes were obtained using an electrochemically exfoliated graphite (GR) electrode from secondary steel-making industry performed in a two-electrode system using tungsten as the counter electrode and GR as the working electrode. The exfoliated GO-MG flakes were processed and incorporated in an elastomeric polyurethane (PU) matrix. The mechanical properties of the PU/GO-MG composites were evaluated and compared with equivalent composites made of PU/GR powder. From experimental data analysis it was concluded that GO-MG flakes were approximately composed of 67 wt% GO and 33 wt% MG. The number of layers in the graphene flakes was estimated to be between 2 and 5 sheets. PU showed a breaking stress of 570 kPa, while the PU/20wt% GR attained a maximum stress of 750 kPa as compared to PU/10wt% GO-MF composite exhibiting a breaking stress of 1060 kPa.展开更多
Two-dimensional(2D)nanomaterials,such as graphene,MoS_(2),and MAX,have attracted increasing research attention in recent years due to their unique structural and performance advantages.However,their complex production...Two-dimensional(2D)nanomaterials,such as graphene,MoS_(2),and MAX,have attracted increasing research attention in recent years due to their unique structural and performance advantages.However,their complex production processes and equipment requirements are significant issues affecting their widespread use.Here,with an exfoliation strategy using three-roll milling,we present a simple,cost-effective,and extensible method to produce multilayer graphene,BN,MoS_(2),and Ti_(3)AlC_(2) nanosheets.The roller and phenolic resin created three kinds of forces on the layered 2D materials,i.e.,shear forces,compressive forces,and adhesive forces,which exfoliated layered materials from their edges and surfaces into nanosheets.Subsequently,the exfoliated materials were ultrasonically washed with alcohol,treated with ultrasonic vibration,and centrifuged to obtain 2D nanomaterials.The easy operation and high yield are attractive for research based on the construction of high-performance 2D nanosheet-based devices at low cost.Herein,the obtained multilayer graphene and MoS_(2) nanosheets were used as anode materials of sodium/potassium-ion batteries,respectively,to test their electrochemical properties.Better performances are obtained compared with their primary bulk materials.展开更多
The poor crystallinity and unstable crystal structure of tungsten disulfide(WS2)limit its application in practice.In this paper,a molten salt electrolysis method is proposed to intercalate metal ions into the interlay...The poor crystallinity and unstable crystal structure of tungsten disulfide(WS2)limit its application in practice.In this paper,a molten salt electrolysis method is proposed to intercalate metal ions into the interlayers of layered WS2 to obtain few-layer sheetlike structures.The effect of the molten salt system,applied constant current and electrolysis duration on the exfoliation degree of WS2 bulk has been investigated.The results show that the products electrolyzed in molten LiCl-NaCl-KCl and NaClKCl salts under 25 mA were more transparent and thinner flakes sheets due to the uniform intercalation of Li^+and Na^+with smaller size.The exfoliated WS_(2)was used as an anode material for sodium-ion batteries with a potential of 0.01-2.50 V.In comparison,the WS_(2)-NaCl-25 mA electrode displays a high reversible capacity of 373 mAh·g^(-1)at0.1 A·g^(-1)after cycling for 100 cycles at the same time showing great rate and cycle performance.It also presents a high capacitive ratio of 90.65%at 1.0 mV·s^(-1).The molten salt electrolysis provides a new perspective on the exfoliation of layered material,while demonstrating the great potential of WS2 as an anode material for sodium-ion battery.展开更多
Thanks to tunable physical and chemical properties,two-dimensional(2D)materials have received intensive interest,endowing their excellent electrocatalytic performances for applications in energy conversion.However,the...Thanks to tunable physical and chemical properties,two-dimensional(2D)materials have received intensive interest,endowing their excellent electrocatalytic performances for applications in energy conversion.However,their catalytic activities are largely determined by poor adsorption energy and limited active edge sites.Herein,a one-step electrochemical exfoliation strategy was developed to fabricate 2D Ni-doped MoS_(2)nanosheets(Ni-EX-MoS_(2))with a lateral size of500 nm and thickness of3.5 nm.Profiting from high electrical conductivity and abundant exposing active sites,Ni-EX-MoS_(2)catalyst displayed an admirable performance for electrochemical hydrogen evolution reaction(HER)with a low overpotential of 145 m V at 10 m A/cm^(2)as well as a small Tafel slope of 89 m V/dec in alkaline media,which are superior to those of the most reported MoS_(2)-based electrocatalysts.The formed Ni species with tuning electronic structure played a crucial role as primary active center of Ni-EX-MoS_(2),as well as the forming stable 1T/2H phase MoS_(2)interface demonstrated a synergistic effect on electrocatalytic HER performance.Further,Ni-EX-MoS_(2)was employed as a cathode electrode for alkaline Zn-H_(2)O battery,which displayed a high power density of 3.3 m W/cm^(2)with excellent stability.This work will provide a simple and effective guideline for design of electrochemically exfoliated transition metal-doped MoS_(2)nanosheets to inspire their practical applications in energy catalytic and storage.展开更多
Graphene materials have drawn tremendous attention in recent years.The formation of holes and pores on graphene sheets can provide transfer channels and facilitate the ion/electron transport kinetics.In this study,gra...Graphene materials have drawn tremendous attention in recent years.The formation of holes and pores on graphene sheets can provide transfer channels and facilitate the ion/electron transport kinetics.In this study,graphene nanosheets were prepared electrochemically,and then,they were used as the starting material for the preparation of holey graphene(HG)through the KOH activation process.The weight ratio of initial electrochemically exfoliated graphene(EEG)to KOH was optimized according to the morphological features,BET surface area examination,graphene number of layers calculated from XRD patterns,and the ID/IG ratio obtained from Raman analysis.Results showed that increasing the KOH amount led to the achievement of higher values of ID/IG and surface area and less re-stacking of graphene sheets which occurs because of the heat treatment process.The environmental burdens of the production routes for the preparation of EEG and HG were investigated by cradle-to-gate life cycle assessment(LCA).The LCA results of EEG production indicated that electricity with the contributions of 94%,91%,82%,and 75%of the total impact in four environmental categories,including fossil fuel depletion,ozone depletion,global warming,and smog was the main environmental weakness.In the pore generation process,KOH was recognized as the biggest contributor(about 51%to 83%of the total impact)in six impact categories,including ozone depletion,non-carcinogenics,smog,global warming,carcinogenics,and eutrophication which could be attributed to its high consumption amount(21.9 kg).This work offers environmental considerations for the development of sustainable graphene materials.展开更多
Micro-supercapacitors(MSCs)show great potential as on-chip energy storage devices for portable electronics.The major flaw of thin-film MSCs is their low energy density.To improve the energy density,thicker electrodes ...Micro-supercapacitors(MSCs)show great potential as on-chip energy storage devices for portable electronics.The major flaw of thin-film MSCs is their low energy density.To improve the energy density,thicker electrodes are required.However,the fabrication of MSCs with thick electrodes remains a challenge.In this work,a novel 3D printing method is employed to fabricate high-performance MSCs with interdigitated exfoliated graphene(EG)/carbon nanotube(CNT)/silver nanowire(Ag NW)electrodes.The nanowelding of Ag NW junction plays a critical role in the realization of 3D printing.To enhance the electrochemical performances of EG,phosphorus atoms are incorporated into the carbon framework with 1.7 at%.The areal capacitance of the 3D printed MSC is 21.6 mF cm^(-2)at a scan rate of 0.01 V s^(-1).The areal energy density of the MSC ranges from 0.5 to 2μWh cm^(-2)with a maximum power density of 2.5 mW cm^(-2).展开更多
Due to its unique physical,chemical and surface electronic properties,molybdenum disulfide(MoS_(2))nanosheets open up a new avenue for nitrogen dioxide(NO2)detection at room temperature.Nevertheless,the gas sensing pr...Due to its unique physical,chemical and surface electronic properties,molybdenum disulfide(MoS_(2))nanosheets open up a new avenue for nitrogen dioxide(NO2)detection at room temperature.Nevertheless,the gas sensing properties of pure MoS_(2) nanosheets are inevitably degenerated by the adsorption of atmospheric oxygen,which results in weak stability for MoS_(2)-based gas sensors.Reducing surface defects and constructing heterojunctions may be effective strategies to improve the gas sensing properties of MoS_(2) nanosheets.In this work,we design a novel nanocomposite based on MoS_(2) nanosheets decorated with tin disulfide(SnS_(2))nanoparticles(MoS_(2)/SnS_(2))via combining the mechanical exfoliation method with the facile hydrothermal method.The experimental results indicate that,after surfaces decoration with SnS_(2) nanoparticles,the as-prepared gas sensor based on MoS_(2)/SnS_(2) nanocomposites exhibits reliable long-term stability with the maximum response value drift of less than 3%at room temperature.Moreover,the MoS_(2)/SnS_(2) sensor also possesses desirable gas sensing properties upon NO_(2) at room temperature,such as high sensitivity,rapid response/recovery speed(28 s/3 s,5×10^(-6) NO_(2)),satisfactory selectivity,favorable repeatability and reversibility.The improved gas sensing properties of MoS_(2)/SnS_(2) nanocomposites can be attributed to the unique electronic properties of MoS 2 nanosheets with the fewer layers structure and the competitive adsorption effect of SnS_(2) nanoparticles.This work elucidates that SnS_(2) nanoparticles serving as an effective antioxidative decoration can promote the stability of MoS_(2) nanosheets,providing a promising approach to achieve high-stability NO2 gas sensors at room temperature.展开更多
文摘To screen patients with early cervical lesions by analyzing the infection of high-risk Human papillomavirus (HR-HPV). Research Methods: The cervical exfoliated cell specimens and their clinical data were collected. The HPV infection types of the collected specimens were detected by fluorescence quantitative PCR, and the correlation between HPV infection and clinicopathological features was analyzed statistically. Results: 725 cases were HR-HPV positive from 2605 cases, including 15 high-risk types of HPV16, 18, 31, 33, 35, 39, 45, 51, 52, 53, 56, 58, 59, 66, 68. Different histological types ranged from NILM to HSIL, and the positive rate of HPV showed an increasing trend with the aggravation of cervical lesions. Conclusion: The positive rate of 15 high-risk HPV types in the collected specimens was 27.8%. Patients with early cervical lesions could be screened for 15 high-risk HPV infection types.
文摘AIM: To investigate the effect of stem cells from human exfoliated deciduous teeth(SHED) transplanted for bone regeneration in the dog mandibular defect.METHODS: In this prospective comparative study, SHEDs had been isolated 5 years ago from human exfoliated deciduous teeth. The undifferentiated stem cells were seeded into mandibular bone through-andthrough defects of 4 dogs. Similar defects in control group were filled with cell-free collagen scaffold. After 12 wk, biopsies were taken and morphometric analysis was performed. The percentage of new bone formation and foreign body reaction were measured in each case. The data were subject to statistical analysis using the Mann-Whitney U and Kruskalwalis statistical tests. Differences at P < 0.05 was considered as significant level.RESULTS: There were no significant differences between control and SHED-seeded groups in connective tissue(P = 0.248), woven bone(P = 0.248) and compact bone(P = 0.082). There were not any side effects in transplanted SHED group such as teratoma or malignancy and abnormalities in this period.CONCLUSION: SHEDs which had been isolated and characterized 5 years ago and stored with cryopreservation banking were capable of proliferation and osteogenesis after 5 years, and no immune response was observed after three months of seeded SHEDs.
基金Projects(21573023,21975030)supported by the National Natural Science Foundation of China。
文摘Electrochemically exfoliated graphene(EEG)is a kind of high-quality graphene with few oxygen-containing functional groups and defects on the surface,and thereby is more suitable as catalyst support than other carbon materials such as extensively used reduced graphene oxide(rGO).However,it is difficult to grow functional materials on EEG due to its inert surface.In this work,ultra-small Pt nanocrystals(~2.6 nm)are successfully formed on EEG and show better electrocatalytic activity towards methanol oxidation than Pt catalysts on r GO.The outstanding catalytic properties of Pt catalysts on EEG can be attributed to the fast electron transfer through EEG and high quality of Pt catalysts such as small grain size,high dispersibility and low oxidation ratio.In addition,SnO2 nanocrystals are controllably generated around Pt catalysts on EEG to raise the poison tolerance of Pt catalysts through using glycine as a linker.Owing to its outstanding properties such as high electrical conductivity and mechanical strength,EEG is expected to be widely used as a novel support for catalysts.
文摘By loading nanometer anatase onto exfoliated graphite with the sol-gel method, exfoliated graphite-TiO2 composite (EG-TiO2) can be prepared, which can adsorb oil and can also degrade oil. In a technologic condition for preparing EG-TiO2, the impregnated number of times is the most important factor to influence oil-adsorbing capability, that is, when the impregnated number of times increases, the amount of saturation-adsorbed oil decreases. The study of EG-TiO2 photocatalytic degradation of machine oil based on the weight-loss method and infrared spectrum method indicates that EG-TiO2 has obvious effect of photocatalytic degradation for machine oil. Its performance is superior to pure nanometer TiO2 powder because nanometer TiO2 in EG-TiO2 has three-dimension laminar structure and comparatively high adsorption capability.
基金Supported by The National Natural Science Foundation of China,No.81970940 and No.81600865Beijing Natural Science Foundation,No.7182182and the National Science and Technology Major Project of the Ministry of Science and Technology of China,No.2018ZX10302207.
文摘BACKGROUND Autoimmune hepatitis is a serious autoimmune liver disease that threatens human health worldwide,which emphasizes the urgent need to identify novel treatments.Stem cells from human exfoliated deciduous teeth(SHED),which are easy to obtain in a non-invasive manner,show pronounced proliferative and immunomodulatory capacities.AIM To investigate the protective effects of SHED on concanavalin A(ConA)-induced hepatitis in mice,and to elucidate the associated regulatory mechanisms.METHODS We used a ConA-induced acute hepatitis mouse model and an in vitro co-culture system to study the protective effects of SHED on ConA-induced autoimmune hepatitis,as well as the associated underlying mechanisms.RESULTS SHED infusion could prevent aberrant histopathological liver architecture caused by ConA-induced infiltration of CD3+,CD4+,tumor necrosis-alpha+,and interferon-gamma+inflammatory cells.Alanine aminotransferase and aspartate aminotransferase were significantly elevated in hepatitis mice.SHED infusion could therefore block ConA-induced alanine aminotransferase and aspartate aminotransferase elevations.Mechanistically,ConA upregulated tumor necrosisalpha and interferon-gamma expression,which was activated by the nuclear factor-kappa B pathway to induce hepatocyte apoptosis,resulting in acute liver injury.SHED administration protected hepatocytes from ConA-induced apoptosis.CONCLUSION SHED alleviates ConA-induced acute liver injury via inhibition of hepatocyte apoptosis mediated by the nuclear factor-kappa B pathway.Our findings could provide a potential treatment strategy for hepatitis.
基金theNewEnergyandIndustrialTechnologyDevelopmentOrganizationofJapan(NEDO No .98E 1 2 0 0 2 )
文摘Exfoliated graphite (EG) is selected as a new kind of sorbent to sorb heavy oil spilled. In order to make use of EG more effectively, some basic experiments are performed to investigate its sorption properties, i.e. , specific sorption, height of saturation layer, sorption time constant. In the present experiments, A grade heavy oil is employed as a standard sorbate. It is concluded that 1) under the condition that the area of solid (filter bottom) liquid (heavy oil) interface is a constant, specific sorption usually decreases when the amount of EG filled or the apparent bulk density increase; however, the specific sorption initially increases when the apparent bulk density is too low and the amount of EG filled is too much; 2) under the condition that the apparent bulk density of EG filled is a constant, the sorption time constant tends to increase when the amount of EG filled increases; however, for a constant amount of EG filled, the sorption time constant will decrease when the apparent bulk density increases.
文摘Exfoliated graphite was prepared by chemical route and then further subjected to thermal oxidation and sonication for size reduction and increased interlayer spacing in natural flake graphite. Exfoliated graphite/ABS composites were pre-pared with varying filler concentration by solution casting method. Exfoliated graphite and composites were character-ised by scanning electron microscopy and energy dispersive X-ray analysis, Fourier transform infrared spectroscopy and X-ray diffractometry techniques. After thermal exfoliation significant peak of graphite at 2? = 26.4? disappeared completely, confirming successful exfoliation of graphite. SEM images revealed homogeneous dispersion of exfoliated graphite in the matrix and EDAX confirmed successful reduction of graphite oxide.
文摘In this study, high-density polyethylene (HDPE)/exfoliated graphite nanoplatelet (xGnP) composites reinforced with a 2 wt.% concentration of nano-magnesia (n-MgO) were fabricated using an injection moulding machine. The thermal properties and morphological structures of the composites were investigated. The XRD results showed the peaks of xGnP and n-MgO, where the intensity of the xGnP peaks became stronger with adding increasing amounts of xGnP into the polymermatrix. In terms of morphology, some agglomeration of particles was observed within the matrix, and the agglomeration decreased the thermal properties of the composites. The nanocomposites showed less thermal stability than the pristine polymer. The reduction in the onset temperature compared to that of neat HDPE was attributed to less adhesion between the fillers and the matrix. In addition, the crystallinity was reduced by the addition of fillers.
文摘In the present investigation the possibility of using exfoliated graphite nanoplatelets (xGnP) as reinforcement in order to enhance the mechanical properties of Cu-based metal matrix composites is explored. Cu-based metal matrix composites reinforced with different amounts of xGnP were fabricated by powder metallurgy route. The microstructure, sliding wear behaviour and mechanical properties of the Cu-xGnP composites were investigated. xGnP has been synthesized from the graphite intercalation compounds (GIC) through rapid evaporation of the intercalant at an elevated temperature. The thermally exfoliated graphite was later sonicated for a period of 5 h in acetone in order to achieve further exfoliation. The xGnP synthesized was characterized using SEM, HRTEM, X-ray diffraction, Raman spectroscopy and Fourier transform infrared spectroscopy. The Cu and xGnP powder mixtures were consolidated under a load of 565 MPa followed by sintering at 850°C for 2 h in inert atmosphere. Cu-1, 2, 3 and 5 wt% xGnP composites were developed. Results of the wear test show that there is a significant improvement in the wear resistance of the composites up to addition of 2 wt% of xGnP. Hardness, tensile strength and strain at failure of the various Cu-xGnP composites also show improvement upto the addition of 2 wt% xGnP beyond which there is a decrease in these properties. The density of the composites decreases with the addition of higher wt% of xGnP although addition of higher wt% of xGnP leads to higher sinterability and densification of the composites, resulting in higher relative density values. The nature of fracture in the pure Cu as well as the various Cu-xGnP composites was found to be ductile. Nanoplatelets of graphite were found firmly embedded in the Cu matrix in case of Cu-xGnP composites containing low wt% of xGnP.
基金supported by the Grants from National Natural Science Foundation of China(No.51172191,51002129 and 11074211)the National Basic Research Program of China(2012CB921303)the Hunan Provincial Innovation Foundation for Graduate(No.CX2012B265)
文摘Ultrathin MoS2 nanosheets were prepared in high yield using a facile and effective hydrothermal intercalation and exfoliation route. The products were characterized in detail using X-ray diffraction, scanning electron microscopy, transmission electron microscopy and Raman spectroscopy. The results show that the high yield of MoS2 nanosheets with good quality was successfully achieved and the dimensions of the immense nanosheets reached 1 μm-2/zm. As anode material for Li-ion batteries, the as-prepared MoS2 nanosheets electrodes exhibited a good initial capacity of 1190 mAh.g-l and excellent cyclic stability at constant current density of 50 mA.g-1. After 50 cycles, it still delivered reversibly sustained high capacities of 750 mAh.g-1.
文摘The effects of ethylene vinyl acetate copelymer (EVA) as a compatibilizer on the dispersion of organically modified montmorillonite(org-MMT) into low-density polyethylene(LDPE) during melt extrusion compounding were studied. The X-ray diffraction patterns reveal that as compared with LDPE, EVA can intercalate more easily into the interlay gallery of org-MMT when the composites contain a low org-MMT content. Exfoliated LDPE/org-MMT nanocompesites in the presence of an EVA compatibilizer could be prepared by using a two-step melt compounding technique with a twin-screw extruder.
文摘Functionalized exfoliated graphene oxide (EGO) for supercapacitor electrodes have been synthesized by simple chemical methods from the exfoliated graphite (EG) as precursor. Structural and morphological characterizations of EGO have been carried out using X-Ray Diffraction (XRD), Scanning Electron Microscopy (SEM), FTIR and Raman spectroscopy. Electrochemical performance of these electrodes has been investigated using cyclic voltammetry, galvanostatic charge-discharge, and electrochemical impedance spectroscopy. The fabricated supercapacitor gave a specific capacitance of 146 Fg-1 and energy density of 20 Wh·kg-1 for a highly oxidized sample with more functional groups compared to pure, lower level oxidized and reduced samples. The single and multi layered graphene oxide sheets produced by this method have a lower degree of agglomeration. We found that the graphene oxide with functional oxygen groups of quinine type enhances the capacitance compared to other oxygen functional groups.
基金supported by the National Natural Science Foundation of China(Nos.21706283 and 21776308)Beijing Talents Foundation(No.2017000020124G010)+1 种基金Science Foundation of China University of Petroleum,Beijing(No.2462017YJRC003)the Joint Open Fund of Jiangsu Collaborative Innovation Center for Ecological Building Material and Environmental Protection Equipment and Key Laboratory for Advanced Technology in Environmental Protection of Jiangsu Province(No.JH201812)。
文摘The commercial graphite(CG)is the conventional anode material for lithium ion batteries(LIBs)due to its low delithiation voltage plateau(below 0.5 V)and extraordinary durability.Nevertheless,the further promotion of energy density of LIBs is restricted by the limited capacity below 0.5 V of CG.Here,based on the supercritical CO2 exfoliation technique,the production of multi-layered graphene(MLG)is achieved from the pilot scale production line.The great merit of the exfoliated MLG anode is that the voltage plateau below 0.5 V is broadened obviously as compared to those of natural graphite and CG.Additionally,no obvious lithium dendrites are observed for MLG during the lithiation process.The large delithiation capacity under the low voltage plateau of MLG is mainly benefited from the combination of Li intercalation and boundary storage mechanism,which is further confirmed by the density functional theory calculations.The LiFePO4/MLG full cell can afford the satisfactory electrochemical property with respect to the capacity,energy density and ultralong cycling stability(90%capacity retention after 500 cycles at 2 C),significantly better than that of LiFePO4/CG.Besides,this developed technique not only dedicates to producing the high-performance anode for LIBs but also opens a door for the mass production of MLG in the industrial scale.
文摘Graphene Oxide/Multilayer-Graphene (GO-MG) flakes were obtained using an electrochemically exfoliated graphite (GR) electrode from secondary steel-making industry performed in a two-electrode system using tungsten as the counter electrode and GR as the working electrode. The exfoliated GO-MG flakes were processed and incorporated in an elastomeric polyurethane (PU) matrix. The mechanical properties of the PU/GO-MG composites were evaluated and compared with equivalent composites made of PU/GR powder. From experimental data analysis it was concluded that GO-MG flakes were approximately composed of 67 wt% GO and 33 wt% MG. The number of layers in the graphene flakes was estimated to be between 2 and 5 sheets. PU showed a breaking stress of 570 kPa, while the PU/20wt% GR attained a maximum stress of 750 kPa as compared to PU/10wt% GO-MF composite exhibiting a breaking stress of 1060 kPa.
基金supported by the National Natural Science Foundation of China(Grant Nos.52272063 and 22262024)Key Research and Development Program of Jiangxi Province(Grant No.20203BBE53066)+1 种基金Natural Science Foundation of Jiangxi Province(Grant No.20224BAB214037)Graduate Innovation Special Fund of Nanchang Hangkong University(Grant No.YC_(2)023-S683).
文摘Two-dimensional(2D)nanomaterials,such as graphene,MoS_(2),and MAX,have attracted increasing research attention in recent years due to their unique structural and performance advantages.However,their complex production processes and equipment requirements are significant issues affecting their widespread use.Here,with an exfoliation strategy using three-roll milling,we present a simple,cost-effective,and extensible method to produce multilayer graphene,BN,MoS_(2),and Ti_(3)AlC_(2) nanosheets.The roller and phenolic resin created three kinds of forces on the layered 2D materials,i.e.,shear forces,compressive forces,and adhesive forces,which exfoliated layered materials from their edges and surfaces into nanosheets.Subsequently,the exfoliated materials were ultrasonically washed with alcohol,treated with ultrasonic vibration,and centrifuged to obtain 2D nanomaterials.The easy operation and high yield are attractive for research based on the construction of high-performance 2D nanosheet-based devices at low cost.Herein,the obtained multilayer graphene and MoS_(2) nanosheets were used as anode materials of sodium/potassium-ion batteries,respectively,to test their electrochemical properties.Better performances are obtained compared with their primary bulk materials.
基金financially supported by the Fundamental Research Funds for the Central Universities(Nos.N2025034 and N2025035)Xingliao Project(No.XLYC1807042)the Program of the Ministry of Education of China for Introducing Talents of Discipline to Universities(No.B16009)。
文摘The poor crystallinity and unstable crystal structure of tungsten disulfide(WS2)limit its application in practice.In this paper,a molten salt electrolysis method is proposed to intercalate metal ions into the interlayers of layered WS2 to obtain few-layer sheetlike structures.The effect of the molten salt system,applied constant current and electrolysis duration on the exfoliation degree of WS2 bulk has been investigated.The results show that the products electrolyzed in molten LiCl-NaCl-KCl and NaClKCl salts under 25 mA were more transparent and thinner flakes sheets due to the uniform intercalation of Li^+and Na^+with smaller size.The exfoliated WS_(2)was used as an anode material for sodium-ion batteries with a potential of 0.01-2.50 V.In comparison,the WS_(2)-NaCl-25 mA electrode displays a high reversible capacity of 373 mAh·g^(-1)at0.1 A·g^(-1)after cycling for 100 cycles at the same time showing great rate and cycle performance.It also presents a high capacitive ratio of 90.65%at 1.0 mV·s^(-1).The molten salt electrolysis provides a new perspective on the exfoliation of layered material,while demonstrating the great potential of WS2 as an anode material for sodium-ion battery.
基金financially supported by the National Natural Science Foundation of China(Nos.21805244,51776188)the financial support from National Natural Science Foundation of China(Nos.21922811,21878270,21961160742)+1 种基金the Zhejiang Provincial Natural Science Foundation of China(No.LR19B060002)the Startup Foundation for HundredTalent Program of Zhejiang University,Jiangxi Province"Double Thousand Plan"Project(No.205201000020)。
文摘Thanks to tunable physical and chemical properties,two-dimensional(2D)materials have received intensive interest,endowing their excellent electrocatalytic performances for applications in energy conversion.However,their catalytic activities are largely determined by poor adsorption energy and limited active edge sites.Herein,a one-step electrochemical exfoliation strategy was developed to fabricate 2D Ni-doped MoS_(2)nanosheets(Ni-EX-MoS_(2))with a lateral size of500 nm and thickness of3.5 nm.Profiting from high electrical conductivity and abundant exposing active sites,Ni-EX-MoS_(2)catalyst displayed an admirable performance for electrochemical hydrogen evolution reaction(HER)with a low overpotential of 145 m V at 10 m A/cm^(2)as well as a small Tafel slope of 89 m V/dec in alkaline media,which are superior to those of the most reported MoS_(2)-based electrocatalysts.The formed Ni species with tuning electronic structure played a crucial role as primary active center of Ni-EX-MoS_(2),as well as the forming stable 1T/2H phase MoS_(2)interface demonstrated a synergistic effect on electrocatalytic HER performance.Further,Ni-EX-MoS_(2)was employed as a cathode electrode for alkaline Zn-H_(2)O battery,which displayed a high power density of 3.3 m W/cm^(2)with excellent stability.This work will provide a simple and effective guideline for design of electrochemically exfoliated transition metal-doped MoS_(2)nanosheets to inspire their practical applications in energy catalytic and storage.
文摘Graphene materials have drawn tremendous attention in recent years.The formation of holes and pores on graphene sheets can provide transfer channels and facilitate the ion/electron transport kinetics.In this study,graphene nanosheets were prepared electrochemically,and then,they were used as the starting material for the preparation of holey graphene(HG)through the KOH activation process.The weight ratio of initial electrochemically exfoliated graphene(EEG)to KOH was optimized according to the morphological features,BET surface area examination,graphene number of layers calculated from XRD patterns,and the ID/IG ratio obtained from Raman analysis.Results showed that increasing the KOH amount led to the achievement of higher values of ID/IG and surface area and less re-stacking of graphene sheets which occurs because of the heat treatment process.The environmental burdens of the production routes for the preparation of EEG and HG were investigated by cradle-to-gate life cycle assessment(LCA).The LCA results of EEG production indicated that electricity with the contributions of 94%,91%,82%,and 75%of the total impact in four environmental categories,including fossil fuel depletion,ozone depletion,global warming,and smog was the main environmental weakness.In the pore generation process,KOH was recognized as the biggest contributor(about 51%to 83%of the total impact)in six impact categories,including ozone depletion,non-carcinogenics,smog,global warming,carcinogenics,and eutrophication which could be attributed to its high consumption amount(21.9 kg).This work offers environmental considerations for the development of sustainable graphene materials.
基金supported by the National Natural Science Foundation of China(Grant Nos.51925704,51877214,51607187,and 51907203)the Hubei Provincial Natural Science Foundation of China(Grant Nos.2019CFB371,and 2019CFB373)the Special Financial Aid to China Postdoctoral Science Foundation(Grant No.2019T120972)。
文摘Micro-supercapacitors(MSCs)show great potential as on-chip energy storage devices for portable electronics.The major flaw of thin-film MSCs is their low energy density.To improve the energy density,thicker electrodes are required.However,the fabrication of MSCs with thick electrodes remains a challenge.In this work,a novel 3D printing method is employed to fabricate high-performance MSCs with interdigitated exfoliated graphene(EG)/carbon nanotube(CNT)/silver nanowire(Ag NW)electrodes.The nanowelding of Ag NW junction plays a critical role in the realization of 3D printing.To enhance the electrochemical performances of EG,phosphorus atoms are incorporated into the carbon framework with 1.7 at%.The areal capacitance of the 3D printed MSC is 21.6 mF cm^(-2)at a scan rate of 0.01 V s^(-1).The areal energy density of the MSC ranges from 0.5 to 2μWh cm^(-2)with a maximum power density of 2.5 mW cm^(-2).
基金financially supported by Hunan Provincial Natural Science Foundation of China(No.2018JJ2404)the Scientific Research Foundation of Hunan Provincial Education Department(Nos.19A475 and 19C1739)Hunan Science and Technology Plan Program(No.2019RS1056)。
文摘Due to its unique physical,chemical and surface electronic properties,molybdenum disulfide(MoS_(2))nanosheets open up a new avenue for nitrogen dioxide(NO2)detection at room temperature.Nevertheless,the gas sensing properties of pure MoS_(2) nanosheets are inevitably degenerated by the adsorption of atmospheric oxygen,which results in weak stability for MoS_(2)-based gas sensors.Reducing surface defects and constructing heterojunctions may be effective strategies to improve the gas sensing properties of MoS_(2) nanosheets.In this work,we design a novel nanocomposite based on MoS_(2) nanosheets decorated with tin disulfide(SnS_(2))nanoparticles(MoS_(2)/SnS_(2))via combining the mechanical exfoliation method with the facile hydrothermal method.The experimental results indicate that,after surfaces decoration with SnS_(2) nanoparticles,the as-prepared gas sensor based on MoS_(2)/SnS_(2) nanocomposites exhibits reliable long-term stability with the maximum response value drift of less than 3%at room temperature.Moreover,the MoS_(2)/SnS_(2) sensor also possesses desirable gas sensing properties upon NO_(2) at room temperature,such as high sensitivity,rapid response/recovery speed(28 s/3 s,5×10^(-6) NO_(2)),satisfactory selectivity,favorable repeatability and reversibility.The improved gas sensing properties of MoS_(2)/SnS_(2) nanocomposites can be attributed to the unique electronic properties of MoS 2 nanosheets with the fewer layers structure and the competitive adsorption effect of SnS_(2) nanoparticles.This work elucidates that SnS_(2) nanoparticles serving as an effective antioxidative decoration can promote the stability of MoS_(2) nanosheets,providing a promising approach to achieve high-stability NO2 gas sensors at room temperature.