Achieving simultaneous reduction of NOx,CO and unburned hydrocarbon(UHC) emissions without compromising engine performance at part loads is the current focus of dual fuel engine research.The present work focuses on an...Achieving simultaneous reduction of NOx,CO and unburned hydrocarbon(UHC) emissions without compromising engine performance at part loads is the current focus of dual fuel engine research.The present work focuses on an experimental investigation conducted on a dual fuel(diesel-natural gas) engine to examine the simultaneous effect of inlet air pre-heating and exhaust gas recirculation(EGR) ratio on performance and emission characteristics at part loads.The use of EGR at high levels seems to be unable to improve the engine performance at part loads.However,it is shown that EGR combined with pre-heating of inlet air can slightly increase thermal efficiency,resulting in reduced levels of both unburned hydrocarbon and NOx emissions.CO and UHC emissions are reduced by 24% and 31%,respectively,The NOx emissions decrease by 21% because of the lower combustion temperature due to the much inert gas brought by EGR and decreased oxygen concentration in the cylinder.展开更多
Oxygen fuels have broad application prospects and great potential for realizing efficient and clean combustion,and hence this study applies diesel/n-butanol blends to explore the influence of split-injection strategy ...Oxygen fuels have broad application prospects and great potential for realizing efficient and clean combustion,and hence this study applies diesel/n-butanol blends to explore the influence of split-injection strategy on combustion and emission characteristics.Simultaneously,changing the way of exhaust gas recirculation(EGR)gas introduction forms uneven in-cylinder components distribution,and utilizing EGR stratification optimizes the combustion process and allows better emission results.The results show that the split-injection strategy can reduce the NO_(x)emissions and keep smoke opacity low compared with the single injection,but the rise in accumulation mode particles is noticeable.NO_(x)emissions show an upward trend as the injection interval expands,while soot emissions are significantly reduced.The increase in pre-injection proportion causes the apparent low-temperature heat release,and the two-stage heat release can be observed during the process of main combustion heat release.More pre-injection mass makes NO_(x)gradually increase,but smoke opacity reaches the lowest point at 15%pre-injection proportion.EGR stratification can optimize the emission results under the split injection strategy,especially the considerable suppression of accumulation mode particulate emissions.Above all,fuel stratification coupled with EGR stratification is beneficial for further realizing the in-cylinder purification of pollutants.展开更多
To meet increasingly stringent emission standards and lower the brake-specific fuel consumption(BSFC)of marine engines,a collaborative optimization study of exhaust gas recirculation(EGR)and a Miller cycle coupled tur...To meet increasingly stringent emission standards and lower the brake-specific fuel consumption(BSFC)of marine engines,a collaborative optimization study of exhaust gas recirculation(EGR)and a Miller cycle coupled turbocharging system was carried out.In this study,a one-dimensional numerical model of the EGR,Miller cycle,and adjustable two-stage turbocharged engine based on WeiChai 6170 marine diesel engine was established.The particle swarm optimization algorithm was used to achieve multi-input and multi-objective comprehensive optimization,and the effects of EGR-coupled Miller regulation and high-pressure turbine bypass regulation on NO_(x)and BSFC were investigated.The results showed that a medium EGR rate-coupled medium Miller degree was better for the comprehensive optimization of NO_(x)and BSFC.At medium EGR rate and low turbine bypass rates,NO_(x)and BSFC were relatively balanced and acceptable.Finally,an optimal steady-state control strategy under full loads was proposed.With an increase in loads,the optimized turbine bypass rate and Miller degree gradually increased.Compared with the EGRonly system,the optimal system of EGR and Miller cycle coupled turbine bypass reduced NO_(x)by 0.87 g/(kW·h)and BSFC by 17.19 g/(kW·h)at 100%load.Therefore,the EGR and Miller cycle coupled adjustable two-stage turbocharging achieves NO_(x)and BSFC optimization under full loads.展开更多
The effects of cooled external exhaust gas recirculation (EGR) on the combustion and emission performance of diesel fuel homogeneous charge compression ignition (HCCI) are studied. Homogeneous mixture is formed by...The effects of cooled external exhaust gas recirculation (EGR) on the combustion and emission performance of diesel fuel homogeneous charge compression ignition (HCCI) are studied. Homogeneous mixture is formed by injecting fuel in-cylinder in the negative valve overlap (NVO) period. So, the HCCI combustion which has low NOx and smoke emission is achieved. Cooled external EGR can delay the start of combustion effectively, which is very useful for high cetane fuel (diesel) HCCI, because these fuels can easily self-ignition, which makes the start of combustion more early. External EGR can avoid the knock combustion of HCCI at high load which means that the EGR can expand the high load limit. HCCI maintains low smoke emission at various EGR rate and various load compared with conventional diesel engine because there is no fuel-rich area in cylinder.展开更多
Effects of exhaust gas recirculation (EGR) on homogeneous charge combustion of n-heptane was studied through simulation and experiment. Experiments were carried out in a single cylinder, four-stroke, air cooled engi...Effects of exhaust gas recirculation (EGR) on homogeneous charge combustion of n-heptane was studied through simulation and experiment. Experiments were carried out in a single cylinder, four-stroke, air cooled engine and a single cylinder, two-stroke, water cooled engine. In the four-stroke engine, experiments of the effects of EGR were examined using heated N2 addition as a surrogate for external EGR and modifying engine to increase internal EGR. The ignition timing was sensitive to EGR due to thermal and chemical effects. EGR or extra air is a key factor in eliminating knock during mid-load conditions. For higher load operation the only way to avoid knock is to control reaction timing through the use of spark ignition. Experimental and modeling results from the two-stroke engine show that auto-ignition can be avoided by increasing the engine speed. The two-stroke engine experiments indicate that high levels of internal EGR can enable spark ignition at lean conditions. At higher load conditions, increasing the engine speed is an effective method to control transition from homogeneous charge compression ignition (HCCI) operation to non-HCCI operation and successful spark ignition of a highly dilute mixture can avoid serious knock.展开更多
Rich burn industrial natural gas engines offer best in class post catalyst emissions by using a non-selective catalyst reduction aftertreatment technology. However, they operate with reduced power density when compare...Rich burn industrial natural gas engines offer best in class post catalyst emissions by using a non-selective catalyst reduction aftertreatment technology. However, they operate with reduced power density when compared to lean burn engines. Dedicated exhaust gas recirculation (EGR) offers a possible pathway for rich burn engines to use non-selective catalyst reduction aftertreatment technology without sacrificing power density. In order to achieve best in class post catalyst emissions, the precious metals and washcoat of a non-selective catalyst must be designed according to the expected exhaust composition of an engine. In this work, a rich burn industrial natural gas engine operating with dedicated EGR was paired with a commercially available non-selective catalyst. At rated brake mean effective pressure (BMEP) the air-fuel ratio was swept between rich and lean conditions to compare the catalyst reduction efficiency and post catalyst emissions of rich burn and dedicated EGR combustion. It was found that due to low oxides of nitrogen (NO<sub>x</sub>) emissions across the entire air-fuel ratio range, dedicated EGR offers a much larger range of air-fuel ratios where low regulated emissions can be met. Low engine out NO<sub>x</sub> also points towards a possibility of using an oxidation catalyst rather than a non-selective catalyst for dedicated EGR applications. The location of the NO<sub>x</sub>-CO tradeoff was shifted to more rich conditions using dedicated EGR.展开更多
Exhaust gas recirculation control(EGRC),an inlet air heating technology,can be utilized in combination with inlet/variable guide vane control(IGV/VGVC) and fuel flow control(FFC) to regulate the load,thereby effective...Exhaust gas recirculation control(EGRC),an inlet air heating technology,can be utilized in combination with inlet/variable guide vane control(IGV/VGVC) and fuel flow control(FFC) to regulate the load,thereby effectively improving the part-load(i.e.,off-design) performance of the gas turbine combined cycle(GTCC).In this study,the E-,F-,and H-Class EGR-GTCC design and off-design system models were established and validated to perform a comparative analysis of the part-load performance under the EGR-IGV-FFC and conventional IGV-FFC strategies in the E/F/H-Class GTCC.Results show that EGR-IGV-FFC has considerable potential for the part-load performance enhancement and can show a higher combined cycle efficiency than IGV-FFC in the E-,F-,and H-Class GTCCs.However,the part-load performance improvement in the corresponding GTCC was weakened for the higher class of the gas turbine because of the narrower load range of EGR action and the deterioration of the gas turbine performance.Furthermore,EGR-IGV-FFC was inferior to IGV-FFC in improving the performance at loads below 50% for the H-Class GTCC.The results obtained in this paper could help guide the application of EGR-IGV-FFC to enhance the part-load performance of various classes of GTCC systems.展开更多
废气再循环(exhaust gas recirculation)是降低柴油机尾气排放中的氮氧化物(NOX)以及降低天然气发动机爆震的一项非常有效的措施,在废气再循环中,EGR冷却器是其中的一个关键零部件。本文在发动机试验台架上研究了EGR冷却器进水流量、EG...废气再循环(exhaust gas recirculation)是降低柴油机尾气排放中的氮氧化物(NOX)以及降低天然气发动机爆震的一项非常有效的措施,在废气再循环中,EGR冷却器是其中的一个关键零部件。本文在发动机试验台架上研究了EGR冷却器进水流量、EGR冷却器进水温度、EGR冷却器进气温度以及EGR冷却器进气流量对EGR冷却器出气温度的影响,以便为发动机匹配最合适的EGR冷却器。试验结果表明:水流量变化对EGR冷却器的出气温度不敏感,发动机无法使用减少或者增加水流量的方法来降低或者提高EGR冷却器的出气温度;EGR冷却器的进水温度每增加1℃,EGR冷却器的出气温度升高0.9℃;EGR冷却器的进气温度每升高10℃,EGR冷却器的出气温度升高0.7℃;EGR冷却器的进气流量每升高10kg/h,EGR冷却器的出气温度升高1.2℃。展开更多
在一款涡轮增压汽油缸内直喷(gasoline direct injection,GDI)汽油机上进行了高压(HP)废气再循环(exhaust gas recirculation,EGR)和低压(LP)EGR对发动机和增压器性能影响的试验研究。分别对比了HP EGR和LP EGR系统在外特性和部分负荷...在一款涡轮增压汽油缸内直喷(gasoline direct injection,GDI)汽油机上进行了高压(HP)废气再循环(exhaust gas recirculation,EGR)和低压(LP)EGR对发动机和增压器性能影响的试验研究。分别对比了HP EGR和LP EGR系统在外特性和部分负荷工况对发动机燃烧、油耗、进排气的影响及增压器相应的工况变化,并分析了出现这些变化的原因。结果表明,汽油机EGR系统能够优化缸内燃烧,减少泵气损失,从而降低油耗。低压EGR系统在部分负荷工况热效率比高压EGR更高,主要原因为低压EGR系统的涡轮增压器可利用的尾气能量更多,且进入发动机的废气温度较低,能进一步优化缸内燃烧。展开更多
文摘Achieving simultaneous reduction of NOx,CO and unburned hydrocarbon(UHC) emissions without compromising engine performance at part loads is the current focus of dual fuel engine research.The present work focuses on an experimental investigation conducted on a dual fuel(diesel-natural gas) engine to examine the simultaneous effect of inlet air pre-heating and exhaust gas recirculation(EGR) ratio on performance and emission characteristics at part loads.The use of EGR at high levels seems to be unable to improve the engine performance at part loads.However,it is shown that EGR combined with pre-heating of inlet air can slightly increase thermal efficiency,resulting in reduced levels of both unburned hydrocarbon and NOx emissions.CO and UHC emissions are reduced by 24% and 31%,respectively,The NOx emissions decrease by 21% because of the lower combustion temperature due to the much inert gas brought by EGR and decreased oxygen concentration in the cylinder.
基金Projects(51476069,51676084)supported by the National Natural Science Foundation of ChinaProject(2019C058-3)supported by the Jilin Provincial Industrial Innovation Special Guidance Fund Project,China+1 种基金Project(20180101059JC)supported by the Jilin Provincial Science and Technology Development Plan Project,ChinaProject(2020C025-2)supported by the Jilin Provincial Specific Project of Industrial Technology Research&Development,China。
文摘Oxygen fuels have broad application prospects and great potential for realizing efficient and clean combustion,and hence this study applies diesel/n-butanol blends to explore the influence of split-injection strategy on combustion and emission characteristics.Simultaneously,changing the way of exhaust gas recirculation(EGR)gas introduction forms uneven in-cylinder components distribution,and utilizing EGR stratification optimizes the combustion process and allows better emission results.The results show that the split-injection strategy can reduce the NO_(x)emissions and keep smoke opacity low compared with the single injection,but the rise in accumulation mode particles is noticeable.NO_(x)emissions show an upward trend as the injection interval expands,while soot emissions are significantly reduced.The increase in pre-injection proportion causes the apparent low-temperature heat release,and the two-stage heat release can be observed during the process of main combustion heat release.More pre-injection mass makes NO_(x)gradually increase,but smoke opacity reaches the lowest point at 15%pre-injection proportion.EGR stratification can optimize the emission results under the split injection strategy,especially the considerable suppression of accumulation mode particulate emissions.Above all,fuel stratification coupled with EGR stratification is beneficial for further realizing the in-cylinder purification of pollutants.
基金Project(K16011)supported by the Marine Low-speed Engine Project-Phase I,China。
文摘To meet increasingly stringent emission standards and lower the brake-specific fuel consumption(BSFC)of marine engines,a collaborative optimization study of exhaust gas recirculation(EGR)and a Miller cycle coupled turbocharging system was carried out.In this study,a one-dimensional numerical model of the EGR,Miller cycle,and adjustable two-stage turbocharged engine based on WeiChai 6170 marine diesel engine was established.The particle swarm optimization algorithm was used to achieve multi-input and multi-objective comprehensive optimization,and the effects of EGR-coupled Miller regulation and high-pressure turbine bypass regulation on NO_(x)and BSFC were investigated.The results showed that a medium EGR rate-coupled medium Miller degree was better for the comprehensive optimization of NO_(x)and BSFC.At medium EGR rate and low turbine bypass rates,NO_(x)and BSFC were relatively balanced and acceptable.Finally,an optimal steady-state control strategy under full loads was proposed.With an increase in loads,the optimized turbine bypass rate and Miller degree gradually increased.Compared with the EGRonly system,the optimal system of EGR and Miller cycle coupled turbine bypass reduced NO_(x)by 0.87 g/(kW·h)and BSFC by 17.19 g/(kW·h)at 100%load.Therefore,the EGR and Miller cycle coupled adjustable two-stage turbocharging achieves NO_(x)and BSFC optimization under full loads.
基金This project is supported by National Basic Research Program of China (973Program, No. 2001CB209205)National Natural Science Foundation ofChina (No. 50406016)
文摘The effects of cooled external exhaust gas recirculation (EGR) on the combustion and emission performance of diesel fuel homogeneous charge compression ignition (HCCI) are studied. Homogeneous mixture is formed by injecting fuel in-cylinder in the negative valve overlap (NVO) period. So, the HCCI combustion which has low NOx and smoke emission is achieved. Cooled external EGR can delay the start of combustion effectively, which is very useful for high cetane fuel (diesel) HCCI, because these fuels can easily self-ignition, which makes the start of combustion more early. External EGR can avoid the knock combustion of HCCI at high load which means that the EGR can expand the high load limit. HCCI maintains low smoke emission at various EGR rate and various load compared with conventional diesel engine because there is no fuel-rich area in cylinder.
基金Supported by National Natural Science Foundation and GM Fund (No.50322261).
文摘Effects of exhaust gas recirculation (EGR) on homogeneous charge combustion of n-heptane was studied through simulation and experiment. Experiments were carried out in a single cylinder, four-stroke, air cooled engine and a single cylinder, two-stroke, water cooled engine. In the four-stroke engine, experiments of the effects of EGR were examined using heated N2 addition as a surrogate for external EGR and modifying engine to increase internal EGR. The ignition timing was sensitive to EGR due to thermal and chemical effects. EGR or extra air is a key factor in eliminating knock during mid-load conditions. For higher load operation the only way to avoid knock is to control reaction timing through the use of spark ignition. Experimental and modeling results from the two-stroke engine show that auto-ignition can be avoided by increasing the engine speed. The two-stroke engine experiments indicate that high levels of internal EGR can enable spark ignition at lean conditions. At higher load conditions, increasing the engine speed is an effective method to control transition from homogeneous charge compression ignition (HCCI) operation to non-HCCI operation and successful spark ignition of a highly dilute mixture can avoid serious knock.
文摘Rich burn industrial natural gas engines offer best in class post catalyst emissions by using a non-selective catalyst reduction aftertreatment technology. However, they operate with reduced power density when compared to lean burn engines. Dedicated exhaust gas recirculation (EGR) offers a possible pathway for rich burn engines to use non-selective catalyst reduction aftertreatment technology without sacrificing power density. In order to achieve best in class post catalyst emissions, the precious metals and washcoat of a non-selective catalyst must be designed according to the expected exhaust composition of an engine. In this work, a rich burn industrial natural gas engine operating with dedicated EGR was paired with a commercially available non-selective catalyst. At rated brake mean effective pressure (BMEP) the air-fuel ratio was swept between rich and lean conditions to compare the catalyst reduction efficiency and post catalyst emissions of rich burn and dedicated EGR combustion. It was found that due to low oxides of nitrogen (NO<sub>x</sub>) emissions across the entire air-fuel ratio range, dedicated EGR offers a much larger range of air-fuel ratios where low regulated emissions can be met. Low engine out NO<sub>x</sub> also points towards a possibility of using an oxidation catalyst rather than a non-selective catalyst for dedicated EGR applications. The location of the NO<sub>x</sub>-CO tradeoff was shifted to more rich conditions using dedicated EGR.
基金financial support from the Fundamental Research Project in the Chinese National Sciences and Technology Major Project (Grant No.2017-1-0002-0002)。
文摘Exhaust gas recirculation control(EGRC),an inlet air heating technology,can be utilized in combination with inlet/variable guide vane control(IGV/VGVC) and fuel flow control(FFC) to regulate the load,thereby effectively improving the part-load(i.e.,off-design) performance of the gas turbine combined cycle(GTCC).In this study,the E-,F-,and H-Class EGR-GTCC design and off-design system models were established and validated to perform a comparative analysis of the part-load performance under the EGR-IGV-FFC and conventional IGV-FFC strategies in the E/F/H-Class GTCC.Results show that EGR-IGV-FFC has considerable potential for the part-load performance enhancement and can show a higher combined cycle efficiency than IGV-FFC in the E-,F-,and H-Class GTCCs.However,the part-load performance improvement in the corresponding GTCC was weakened for the higher class of the gas turbine because of the narrower load range of EGR action and the deterioration of the gas turbine performance.Furthermore,EGR-IGV-FFC was inferior to IGV-FFC in improving the performance at loads below 50% for the H-Class GTCC.The results obtained in this paper could help guide the application of EGR-IGV-FFC to enhance the part-load performance of various classes of GTCC systems.
文摘废气再循环(exhaust gas recirculation)是降低柴油机尾气排放中的氮氧化物(NOX)以及降低天然气发动机爆震的一项非常有效的措施,在废气再循环中,EGR冷却器是其中的一个关键零部件。本文在发动机试验台架上研究了EGR冷却器进水流量、EGR冷却器进水温度、EGR冷却器进气温度以及EGR冷却器进气流量对EGR冷却器出气温度的影响,以便为发动机匹配最合适的EGR冷却器。试验结果表明:水流量变化对EGR冷却器的出气温度不敏感,发动机无法使用减少或者增加水流量的方法来降低或者提高EGR冷却器的出气温度;EGR冷却器的进水温度每增加1℃,EGR冷却器的出气温度升高0.9℃;EGR冷却器的进气温度每升高10℃,EGR冷却器的出气温度升高0.7℃;EGR冷却器的进气流量每升高10kg/h,EGR冷却器的出气温度升高1.2℃。
文摘在一款涡轮增压汽油缸内直喷(gasoline direct injection,GDI)汽油机上进行了高压(HP)废气再循环(exhaust gas recirculation,EGR)和低压(LP)EGR对发动机和增压器性能影响的试验研究。分别对比了HP EGR和LP EGR系统在外特性和部分负荷工况对发动机燃烧、油耗、进排气的影响及增压器相应的工况变化,并分析了出现这些变化的原因。结果表明,汽油机EGR系统能够优化缸内燃烧,减少泵气损失,从而降低油耗。低压EGR系统在部分负荷工况热效率比高压EGR更高,主要原因为低压EGR系统的涡轮增压器可利用的尾气能量更多,且进入发动机的废气温度较低,能进一步优化缸内燃烧。