A two-dimensional mathematical model is used to simulate the influence of water flow on the piers of a bridge for different incidence angles.In particular,a finite volume method is used to discretize the Navier-Stokes...A two-dimensional mathematical model is used to simulate the influence of water flow on the piers of a bridge for different incidence angles.In particular,a finite volume method is used to discretize the Navier-Stokes control equations and calculate the circumferential pressure coefficient distribution on the bridge piers’surface.The results show that the deflection of the flow is non-monotonic.It first increases and then decreases with an increase in the skew angle.展开更多
In our previous works, we suggest that quantum particles are composite physical objects endowed with the geometric and topological structures of their corresponding differentiable manifolds that would allow them to im...In our previous works, we suggest that quantum particles are composite physical objects endowed with the geometric and topological structures of their corresponding differentiable manifolds that would allow them to imitate and adapt to physical environments. In this work, we show that Dirac equation in fact describes quantum particles as composite structures that are in a fluid state in which the components of the wavefunction can be identified with the stream function and the velocity potential of a potential flow formulated in the theory of classical fluids. We also show that Dirac quantum particles can manifest as standing waves which are the result of the superposition of two fluid flows moving in opposite directions. However, for a steady motion a Dirac quantum particle does not exhibit a wave motion even though it has the potential to establish a wave within its physical structure, therefore, without an external disturbance a Dirac quantum particle may be considered as a classical particle defined in classical physics. And furthermore, from the fact that there are two identical fluid flows in opposite directions within their physical structures, the fluid state model of Dirac quantum particles can be used to explain why fermions are spin-half particles.展开更多
The combined effect of magnetic field, thermal radiation and local suction on the steady turbulent compressible boundary layer flow with adverse pressure gradient is numerically studied. The magnetic field is constant...The combined effect of magnetic field, thermal radiation and local suction on the steady turbulent compressible boundary layer flow with adverse pressure gradient is numerically studied. The magnetic field is constant and applied transversely to the direction of the flow. The fluid is subjected to a localized suction and is considered as a radiative optically thin gray fluid. The Reynolds Averaged Boundary Layer (RABL) equations with appropriate boundary conditions are transformed using the compressible Falkner Skan transformation. The nonlinear and coupled system of partial differential equations (PDEs) is solved using the Keller box method. For the eddy-kinematic viscosity the Baldwin Lomax turbulent model and for the turbulent Prandtl number the extended Kays Crawford model are used. The numerical results show that the flow field can be controlled by the combined effect of the applied magnetic field, thermal radiation, and localized suction, moving the separation point, xs , downstream towards the plate’s end, and increasing total drag, D . The combined effect of thermal radiation and magnetic field has a cooling effect on the fluid at the wall vicinity. The combined effect has a greater influence in the case of high free-stream temperature.展开更多
A computational fluid dynamics(CFD)calculation model for the airflow and heat transfer in an armored vehicle cooling wind tunnel is established.A practical method to determine computation region outside power train co...A computational fluid dynamics(CFD)calculation model for the airflow and heat transfer in an armored vehicle cooling wind tunnel is established.A practical method to determine computation region outside power train compartment,produce grid and ensure grid quality is put forward.A commercial software FLUENT can be used to obtain solutions numerically in 3-D space.Precision of CFD calculation results is verified.The CFD model is used in designing a vehicle cooling wind tunnel,and air flow resistance of fan blast baffle is calculated.The calculated results show feasibility of the CFD model and the method.展开更多
文摘A two-dimensional mathematical model is used to simulate the influence of water flow on the piers of a bridge for different incidence angles.In particular,a finite volume method is used to discretize the Navier-Stokes control equations and calculate the circumferential pressure coefficient distribution on the bridge piers’surface.The results show that the deflection of the flow is non-monotonic.It first increases and then decreases with an increase in the skew angle.
文摘In our previous works, we suggest that quantum particles are composite physical objects endowed with the geometric and topological structures of their corresponding differentiable manifolds that would allow them to imitate and adapt to physical environments. In this work, we show that Dirac equation in fact describes quantum particles as composite structures that are in a fluid state in which the components of the wavefunction can be identified with the stream function and the velocity potential of a potential flow formulated in the theory of classical fluids. We also show that Dirac quantum particles can manifest as standing waves which are the result of the superposition of two fluid flows moving in opposite directions. However, for a steady motion a Dirac quantum particle does not exhibit a wave motion even though it has the potential to establish a wave within its physical structure, therefore, without an external disturbance a Dirac quantum particle may be considered as a classical particle defined in classical physics. And furthermore, from the fact that there are two identical fluid flows in opposite directions within their physical structures, the fluid state model of Dirac quantum particles can be used to explain why fermions are spin-half particles.
文摘The combined effect of magnetic field, thermal radiation and local suction on the steady turbulent compressible boundary layer flow with adverse pressure gradient is numerically studied. The magnetic field is constant and applied transversely to the direction of the flow. The fluid is subjected to a localized suction and is considered as a radiative optically thin gray fluid. The Reynolds Averaged Boundary Layer (RABL) equations with appropriate boundary conditions are transformed using the compressible Falkner Skan transformation. The nonlinear and coupled system of partial differential equations (PDEs) is solved using the Keller box method. For the eddy-kinematic viscosity the Baldwin Lomax turbulent model and for the turbulent Prandtl number the extended Kays Crawford model are used. The numerical results show that the flow field can be controlled by the combined effect of the applied magnetic field, thermal radiation, and localized suction, moving the separation point, xs , downstream towards the plate’s end, and increasing total drag, D . The combined effect of thermal radiation and magnetic field has a cooling effect on the fluid at the wall vicinity. The combined effect has a greater influence in the case of high free-stream temperature.
文摘A computational fluid dynamics(CFD)calculation model for the airflow and heat transfer in an armored vehicle cooling wind tunnel is established.A practical method to determine computation region outside power train compartment,produce grid and ensure grid quality is put forward.A commercial software FLUENT can be used to obtain solutions numerically in 3-D space.Precision of CFD calculation results is verified.The CFD model is used in designing a vehicle cooling wind tunnel,and air flow resistance of fan blast baffle is calculated.The calculated results show feasibility of the CFD model and the method.