Thermal loss of exhaust flue gas accounts for the largest proportion of the total boiler thermal loss. Nowadays in China, the exhaust gas temperature in many thermal power plants is much higher than the designed value...Thermal loss of exhaust flue gas accounts for the largest proportion of the total boiler thermal loss. Nowadays in China, the exhaust gas temperature in many thermal power plants is much higher than the designed value, thus, the recycle and reuse of the waste heat of tail flue gas is necessary. However, lower exhaust gas temperature will aggravate low temperature corrosion of the tail heating surface, which also causes huge economic losses. In order to solve this problem, this paper designs a monitoring experiment platform of flue gas low temperature corrosion, which can measure the corrosion condition of different materials by different flue gas compositions and temperature corrosion speeds. Besides, effects of low temperature corrosion factors are analyzed to find the best exhaust gas temperature and the surface material of tail heating surface.展开更多
To study various properties of a gas has been a subject of rational curiosity in pneumatic sciences. A gaseous system, in general, is studied by using four measurable parameters namely, the pressure, volume, number of...To study various properties of a gas has been a subject of rational curiosity in pneumatic sciences. A gaseous system, in general, is studied by using four measurable parameters namely, the pressure, volume, number of moles and temperature. In the present work, an attempt is made to study the variation of energy of an ideal gas with the two measurable parameters, the mass and temperature of the gas. Using the well known ideal gas equation, PV = nRT where symbols have their usual meanings and some simple mathematical operations widely used in physics, chemistry and mathematics in a transparent manner, an equation of state relating the three variables, the energy, mass and temperature of an ideal gas is obtained. It is found that energy of an ideal gas is equal to the product of mass and temperature of the gas. This gives a direct relationship between the energy, mass and temperature of the gas. Out of the three variables, the energy, mass and temperature of an ideal gas, if one of the parameters is held constant, the other two variables can be measured. At a constant temperature, when the power or energy is stabilized, the increase in the mass of the gas may affect the new works and an engine can therefore be prevented from overheating.展开更多
The introduction of surface engineering is expected to be an effective strategy against fretting damage. A large number of studies show that the low gas multi-component (such as carbon, nitrogen, sulphur and oxygen, ...The introduction of surface engineering is expected to be an effective strategy against fretting damage. A large number of studies show that the low gas multi-component (such as carbon, nitrogen, sulphur and oxygen, etc) thermo-chemical treatment(LTGMTT) can overcome the brittleness of nitriding process, and upgrade the surface hardness and improve the wear resistance and fatigue properties of the work-pieces significantly. However, there are few reports on the anti-fretting properties of the LTGMTT modified layer up to now, which limits the applications of fretting. So this paper discusses the fretting wear behavior of modified layer on the surface of LZ50 (0.48%C) steel prepared by low temperature gas multi-component thermo-chemical treatment (LTGMTT) technology. The fretting wear tests of the modified layer flat specimens and its substrate (LZ50 steel) against 52100 steel balls with diameter of 40 mm are carried out under normal load of 150 N and displacement amplitudes varied from 2 μm to 40 μm. Characterization of the modified layer and dynamic analyses in combination with microscopic examinations were performed through the means of scanning electron microscope(SEM), optical microscope(OM), X-ray diffraction(XRD) and surface profilometer. The experimental results showed that the modified layer with a total thickness of 60 μm was consisted of three parts, i.e., loose layer, compound layer and diffusion layer. Compared with the substrate, the range of the mixed fretting regime(MFR) of the LTGMTT modified layer diminished, and the slip regime(SR) of the modified layer shifted to the direction of smaller displacement amplitude. The coefficient of friction(COF) of the modified layer was lower than that of the substrate in the initial stage. For the modified layer, the damage in partial slip regime(PSR) was very slight. The fretting wear mechanism of the modified layer both in MFR and SR was abrasive wear and delamination. The modified layer presented better wear resistance than the substrate in PSR and MFR; however, in SR, the wear resistance of the modified layer decreased with the increase of the displacement amplitudes. The experimental results can provide some experimental bases for promoting industrial application of LTGMTT modified layer in anti-fretting wear.展开更多
Polythiophene/WO3(PTP/WO3)organic-inorganic hybrids were synthesized by an in situ chemical oxidative polymerization method,and char- acterized by X-ray diffraction(XRD),transmission electron microscopy(TEM)and ...Polythiophene/WO3(PTP/WO3)organic-inorganic hybrids were synthesized by an in situ chemical oxidative polymerization method,and char- acterized by X-ray diffraction(XRD),transmission electron microscopy(TEM)and thermo-gravimetric analysis(TGA).The Polythiophene/ WO3 hybrids have higher thermal stability than pure polythiophene,which is beneficial to potential application as chemical sensors.Gas sensing measurements demonstrate that the gas sensor based on the Polythiophene/WO3 hybrids has high response and good selectivity for de- tecting NO2 of ppm level at low temperature.Both the operating temperature and PTP contents have an influence on the response of PTP/WO3 hybrids to NO2.The 10 wt%PTP/WO3 hybrid showed the highest response at low operating temperature of 70-C.It is expected that the PTP/WO3 hybrids can be potentially used as gas sensor material for detecting the low concentration of NO2 at low temperature.展开更多
The wear resistance of austenitic stainless steels can be improved by thermo-chemical surface treatment with nitrogen and carbon. However, it is possible that the corrosion resistance will be impaired by the precipita...The wear resistance of austenitic stainless steels can be improved by thermo-chemical surface treatment with nitrogen and carbon. However, it is possible that the corrosion resistance will be impaired by the precipitation of chromiumnitrid or -carbide. The present contribution deals with investigations of the corrosion behaviour and structural characteristics of a low temperature nitrided and carburised austenitic stainless steel. The material investigated was AISI 316L (X2CrNiMol7-12-2) austenitic stainless steel. A commercial plasma-nitriding unit (pulsed dc) was used for the nitriding and carburising process. Additional samples were treated by the gasoxinitriding process for a comparison between plasma- and gasoxinitriding. The nitrided and carburised layer of austenitic stainless steel consists of the nitrogen or carbon S-phase (expanded austenite), respectively. X-ray diffraction investigations show the typical shift of the peaks to lower angles, indicating expansion of the fee lattice. Also the X-ray diffraction technique was employed to study the residual stresses in the nitrogen and carbon S-phase. The corrosion behaviour of surface engineered samples was investigated with electrochemical methods. Anodic potentiodynamic polarisation curves were recorded for testing the resistance against general corrosion (in H2SO4) and pitting corrosion (in NaCl).展开更多
Polyaniline (PANI) was prepared by the chemical oxidative polymerization of aniline, and ZnO, with the mean particle size of 28 nm, was synthesized by a non-aqueous solvent method. The organic-inorganic PANI/ZnO hyb...Polyaniline (PANI) was prepared by the chemical oxidative polymerization of aniline, and ZnO, with the mean particle size of 28 nm, was synthesized by a non-aqueous solvent method. The organic-inorganic PANI/ZnO hybrids with different mass fractions of PANI were obtained by mechanically mixing the prepared PANI and ZnO. The gas sensing properties of PANI/ZnO hybrids to different volatile organic compounds (VOCs) including methanol, ethanol and acetone were investigated at a low operating temperature of 90°C. Compared with the pure PANI and ZnO, the PANI/ZnO hybrids presented much higher response to VOCs. Meanwhile, the PANI/ZnO hybrid exhibited a good reversibility and a short response-recovery time, implying its potential application for gas sensors. The sensing mechanism was suggested to be related to the existence of p-n heterojunctions in the PANI/ZnO hybrids.展开更多
ObjectiveThis study was designed to evaluate the effects of imidapril on blood gas parameters in broiler chickens. MethodTwenty-four chickens were randomly divided into three groups (n=8), control group, low temperatu...ObjectiveThis study was designed to evaluate the effects of imidapril on blood gas parameters in broiler chickens. MethodTwenty-four chickens were randomly divided into three groups (n=8), control group, low temperature group and imidapril group. Chickens in low temperature group and imidapril group were exposed to low ambient temperature (12-18 ℃) from age at 14 d to 45 d, whereas the control group was exposed to 24-30 ℃; chickens in imidapril group were gavaged with imidapril (3 mg/kg) once daily for 30 d. At age of 45 d, blood was taken from wing vein and blood gas parameters were evaluated by blood gas analyzer in Luoyang Central Hospital Affiliated to Zhengzhou University. ResultImidapril significantly increased hematocrit (HCT) and total hemoglobin content (T HBC ) and blood Na concentration in broiler chickens exposed to low ambient temperature. No significant differences were observed in pH, P CO 2 , P O 2 , K + , Ca 2+ , HCO 3-, HCO 3std , T CO 2 , BE and SO 2c . ConclusionImidapril increases hematocrit, total hemoglobin content and blood Na + concentration in chickens exposed to low ambient temperature.展开更多
With the rapid development of deepwater drilling operations,more and more complex technical challenges have to be faced due to the rigorous conditions encountered.One of these challenges is that the drilling fluid use...With the rapid development of deepwater drilling operations,more and more complex technical challenges have to be faced due to the rigorous conditions encountered.One of these challenges is that the drilling fluid used must had good rheological properties at low temperatures and high ability to inhibit hydrate formation.Synthetic drilling fluid has been widely applied to deepwater drilling operations due to its high penetration rate,excellent rheological properties,good ability to prevent hydrate formation,and high biodegradability.A synthetic drilling fluid formulation was developed in our laboratory.The rheological properties of this drilling fluid at low temperatures (0-20 °C) were tested with a 6-speed viscometer and its ability to inhibit hydrate formation was evaluated at 20 MPa CH 4 gas and 0 °C by differential scanning calorimetry (DSC).Several factors influencing the low temperature rheological properties of this synthetic drilling fluid were studied in this paper.These included the viscosity of the base fluid,the amount of CEMU and organic clay,and the water volume fraction.展开更多
The influence of processing temperatures on the surface characteristics of AISI 204Cu austenitic stainless steel was investigated during a low temperature plasma nitrocarburizing.The resultant layer was a dual-layer s...The influence of processing temperatures on the surface characteristics of AISI 204Cu austenitic stainless steel was investigated during a low temperature plasma nitrocarburizing.The resultant layer was a dual-layer structure,which comprises a N-enriched layer on the top of C-enriched layer.The surface hardness and the layer thickness increase up to about HV 0.05 1000 and 20μm with increasing temperature.The specimen treated at 400°C shows a much enhanced corrosion resistance compared to the untreated steel.A loss in corrosion resistance was observed for specimens treated at temperatures above 430°C due to the formation of Cr2N.展开更多
In this work,the outdoor corrosion behavior of AZ31B magnesium alloy in the Antarctic atmospheric environment was investigated.The surface corrosion state of the specimens exposed to the Antarctic atmosphere for 1 mon...In this work,the outdoor corrosion behavior of AZ31B magnesium alloy in the Antarctic atmospheric environment was investigated.The surface corrosion state of the specimens exposed to the Antarctic atmosphere for 1 month and 24 months differ significantly.The corrosion rate after 1 month during the summer season was 19.82 g/m^(2)·year and it decreased to 13.87 g/m^(2)·year after two years’exposure.Corrosion is initiated with pitting corrosion and then evolved to uniform corrosion with prolonging exposure time.The skyward surface exhibited a much severe corrosion than that of the groundward surface,attributed to the long-term existence of the adsorbed electrolyte layer.The corrosion products formed on the alloy exposed in Antarctica environment were MgCO_(3)·3H_(2)O,MgCO_(3)·5H_(2)O and Mg_(2)CO_(3)(OH)_(2)·0.5H_(2)O,with the MgCO_(3)·3H_(2)O as the dominant phase in the initial stage and the Mg_(2)CO_(3)(OH)_(2)·0.5H_(2)O as the dominant phase after long-term exposure.展开更多
文摘Thermal loss of exhaust flue gas accounts for the largest proportion of the total boiler thermal loss. Nowadays in China, the exhaust gas temperature in many thermal power plants is much higher than the designed value, thus, the recycle and reuse of the waste heat of tail flue gas is necessary. However, lower exhaust gas temperature will aggravate low temperature corrosion of the tail heating surface, which also causes huge economic losses. In order to solve this problem, this paper designs a monitoring experiment platform of flue gas low temperature corrosion, which can measure the corrosion condition of different materials by different flue gas compositions and temperature corrosion speeds. Besides, effects of low temperature corrosion factors are analyzed to find the best exhaust gas temperature and the surface material of tail heating surface.
文摘To study various properties of a gas has been a subject of rational curiosity in pneumatic sciences. A gaseous system, in general, is studied by using four measurable parameters namely, the pressure, volume, number of moles and temperature. In the present work, an attempt is made to study the variation of energy of an ideal gas with the two measurable parameters, the mass and temperature of the gas. Using the well known ideal gas equation, PV = nRT where symbols have their usual meanings and some simple mathematical operations widely used in physics, chemistry and mathematics in a transparent manner, an equation of state relating the three variables, the energy, mass and temperature of an ideal gas is obtained. It is found that energy of an ideal gas is equal to the product of mass and temperature of the gas. This gives a direct relationship between the energy, mass and temperature of the gas. Out of the three variables, the energy, mass and temperature of an ideal gas, if one of the parameters is held constant, the other two variables can be measured. At a constant temperature, when the power or energy is stabilized, the increase in the mass of the gas may affect the new works and an engine can therefore be prevented from overheating.
基金supported by National Natural Science Foundation of China (Grant No. 50521503)National Basic Research Program of China (973 Program, Grant No. 2007CB714704)National Hi-tech Research and Development Program of China (863 Program, Grant No. 2006AA04Z406)
文摘The introduction of surface engineering is expected to be an effective strategy against fretting damage. A large number of studies show that the low gas multi-component (such as carbon, nitrogen, sulphur and oxygen, etc) thermo-chemical treatment(LTGMTT) can overcome the brittleness of nitriding process, and upgrade the surface hardness and improve the wear resistance and fatigue properties of the work-pieces significantly. However, there are few reports on the anti-fretting properties of the LTGMTT modified layer up to now, which limits the applications of fretting. So this paper discusses the fretting wear behavior of modified layer on the surface of LZ50 (0.48%C) steel prepared by low temperature gas multi-component thermo-chemical treatment (LTGMTT) technology. The fretting wear tests of the modified layer flat specimens and its substrate (LZ50 steel) against 52100 steel balls with diameter of 40 mm are carried out under normal load of 150 N and displacement amplitudes varied from 2 μm to 40 μm. Characterization of the modified layer and dynamic analyses in combination with microscopic examinations were performed through the means of scanning electron microscope(SEM), optical microscope(OM), X-ray diffraction(XRD) and surface profilometer. The experimental results showed that the modified layer with a total thickness of 60 μm was consisted of three parts, i.e., loose layer, compound layer and diffusion layer. Compared with the substrate, the range of the mixed fretting regime(MFR) of the LTGMTT modified layer diminished, and the slip regime(SR) of the modified layer shifted to the direction of smaller displacement amplitude. The coefficient of friction(COF) of the modified layer was lower than that of the substrate in the initial stage. For the modified layer, the damage in partial slip regime(PSR) was very slight. The fretting wear mechanism of the modified layer both in MFR and SR was abrasive wear and delamination. The modified layer presented better wear resistance than the substrate in PSR and MFR; however, in SR, the wear resistance of the modified layer decreased with the increase of the displacement amplitudes. The experimental results can provide some experimental bases for promoting industrial application of LTGMTT modified layer in anti-fretting wear.
基金financially supported by the National Natural Science Foundation of China(No.20871071)the Science and Technology Commission Foundation of Tianjin(No.09JCYBJC03600 and 10JCYBJC03900)
文摘Polythiophene/WO3(PTP/WO3)organic-inorganic hybrids were synthesized by an in situ chemical oxidative polymerization method,and char- acterized by X-ray diffraction(XRD),transmission electron microscopy(TEM)and thermo-gravimetric analysis(TGA).The Polythiophene/ WO3 hybrids have higher thermal stability than pure polythiophene,which is beneficial to potential application as chemical sensors.Gas sensing measurements demonstrate that the gas sensor based on the Polythiophene/WO3 hybrids has high response and good selectivity for de- tecting NO2 of ppm level at low temperature.Both the operating temperature and PTP contents have an influence on the response of PTP/WO3 hybrids to NO2.The 10 wt%PTP/WO3 hybrid showed the highest response at low operating temperature of 70-C.It is expected that the PTP/WO3 hybrids can be potentially used as gas sensor material for detecting the low concentration of NO2 at low temperature.
基金The DFG(Deutsche Forschungsgemeinschaf)is gratefully acknowledged for the financial support(DFG-BI 418/9-1).
文摘The wear resistance of austenitic stainless steels can be improved by thermo-chemical surface treatment with nitrogen and carbon. However, it is possible that the corrosion resistance will be impaired by the precipitation of chromiumnitrid or -carbide. The present contribution deals with investigations of the corrosion behaviour and structural characteristics of a low temperature nitrided and carburised austenitic stainless steel. The material investigated was AISI 316L (X2CrNiMol7-12-2) austenitic stainless steel. A commercial plasma-nitriding unit (pulsed dc) was used for the nitriding and carburising process. Additional samples were treated by the gasoxinitriding process for a comparison between plasma- and gasoxinitriding. The nitrided and carburised layer of austenitic stainless steel consists of the nitrogen or carbon S-phase (expanded austenite), respectively. X-ray diffraction investigations show the typical shift of the peaks to lower angles, indicating expansion of the fee lattice. Also the X-ray diffraction technique was employed to study the residual stresses in the nitrogen and carbon S-phase. The corrosion behaviour of surface engineered samples was investigated with electrochemical methods. Anodic potentiodynamic polarisation curves were recorded for testing the resistance against general corrosion (in H2SO4) and pitting corrosion (in NaCl).
基金financially supported by the National Natural Science Foundation of China(No.21171099)Science and Technology Commission Foundation of Tianjin(Nos.09JCYBJC03600 and 10JCYBJC03900)
文摘Polyaniline (PANI) was prepared by the chemical oxidative polymerization of aniline, and ZnO, with the mean particle size of 28 nm, was synthesized by a non-aqueous solvent method. The organic-inorganic PANI/ZnO hybrids with different mass fractions of PANI were obtained by mechanically mixing the prepared PANI and ZnO. The gas sensing properties of PANI/ZnO hybrids to different volatile organic compounds (VOCs) including methanol, ethanol and acetone were investigated at a low operating temperature of 90°C. Compared with the pure PANI and ZnO, the PANI/ZnO hybrids presented much higher response to VOCs. Meanwhile, the PANI/ZnO hybrid exhibited a good reversibility and a short response-recovery time, implying its potential application for gas sensors. The sensing mechanism was suggested to be related to the existence of p-n heterojunctions in the PANI/ZnO hybrids.
基金Supported by Doctoral Scientific Research Fund of Henan University of Science and Technology(09001575)Project of Henan Science and Technology(122300410234)Science and Technology Research Projects of Education Department of Henan Province(13A320429)
文摘ObjectiveThis study was designed to evaluate the effects of imidapril on blood gas parameters in broiler chickens. MethodTwenty-four chickens were randomly divided into three groups (n=8), control group, low temperature group and imidapril group. Chickens in low temperature group and imidapril group were exposed to low ambient temperature (12-18 ℃) from age at 14 d to 45 d, whereas the control group was exposed to 24-30 ℃; chickens in imidapril group were gavaged with imidapril (3 mg/kg) once daily for 30 d. At age of 45 d, blood was taken from wing vein and blood gas parameters were evaluated by blood gas analyzer in Luoyang Central Hospital Affiliated to Zhengzhou University. ResultImidapril significantly increased hematocrit (HCT) and total hemoglobin content (T HBC ) and blood Na concentration in broiler chickens exposed to low ambient temperature. No significant differences were observed in pH, P CO 2 , P O 2 , K + , Ca 2+ , HCO 3-, HCO 3std , T CO 2 , BE and SO 2c . ConclusionImidapril increases hematocrit, total hemoglobin content and blood Na + concentration in chickens exposed to low ambient temperature.
基金the financial support from the National Science and Technology Key Projects(2008ZX05056-002-03-04 and 2008ZX05030-005-07-03)
文摘With the rapid development of deepwater drilling operations,more and more complex technical challenges have to be faced due to the rigorous conditions encountered.One of these challenges is that the drilling fluid used must had good rheological properties at low temperatures and high ability to inhibit hydrate formation.Synthetic drilling fluid has been widely applied to deepwater drilling operations due to its high penetration rate,excellent rheological properties,good ability to prevent hydrate formation,and high biodegradability.A synthetic drilling fluid formulation was developed in our laboratory.The rheological properties of this drilling fluid at low temperatures (0-20 °C) were tested with a 6-speed viscometer and its ability to inhibit hydrate formation was evaluated at 20 MPa CH 4 gas and 0 °C by differential scanning calorimetry (DSC).Several factors influencing the low temperature rheological properties of this synthetic drilling fluid were studied in this paper.These included the viscosity of the base fluid,the amount of CEMU and organic clay,and the water volume fraction.
基金Project(2011AA192)supported by Dongeui University,Korea
文摘The influence of processing temperatures on the surface characteristics of AISI 204Cu austenitic stainless steel was investigated during a low temperature plasma nitrocarburizing.The resultant layer was a dual-layer structure,which comprises a N-enriched layer on the top of C-enriched layer.The surface hardness and the layer thickness increase up to about HV 0.05 1000 and 20μm with increasing temperature.The specimen treated at 400°C shows a much enhanced corrosion resistance compared to the untreated steel.A loss in corrosion resistance was observed for specimens treated at temperatures above 430°C due to the formation of Cr2N.
基金The authors acknowledgement the Excellent Youth Science Fund of Shandong Province(No.ZR2022YQ44)the Fundamental Research Funds for the Central Universities(No.201762008).
文摘In this work,the outdoor corrosion behavior of AZ31B magnesium alloy in the Antarctic atmospheric environment was investigated.The surface corrosion state of the specimens exposed to the Antarctic atmosphere for 1 month and 24 months differ significantly.The corrosion rate after 1 month during the summer season was 19.82 g/m^(2)·year and it decreased to 13.87 g/m^(2)·year after two years’exposure.Corrosion is initiated with pitting corrosion and then evolved to uniform corrosion with prolonging exposure time.The skyward surface exhibited a much severe corrosion than that of the groundward surface,attributed to the long-term existence of the adsorbed electrolyte layer.The corrosion products formed on the alloy exposed in Antarctica environment were MgCO_(3)·3H_(2)O,MgCO_(3)·5H_(2)O and Mg_(2)CO_(3)(OH)_(2)·0.5H_(2)O,with the MgCO_(3)·3H_(2)O as the dominant phase in the initial stage and the Mg_(2)CO_(3)(OH)_(2)·0.5H_(2)O as the dominant phase after long-term exposure.