Land-use and plant invasion influence biodiversity.Understanding the effects of land-use types and invasive plants on the ecosystem is crucial for better management and the development of strategic plans for increasin...Land-use and plant invasion influence biodiversity.Understanding the effects of land-use types and invasive plants on the ecosystem is crucial for better management and the development of strategic plans for increasing biodiversity in Jeju Island,Korea,a designated Biosphere Reserve by the United Nations Education,Scientific,and Cultural Organization.The effect of the most dominant invasive exotic species,Hypochaeris radicata,on the four land-use types of Jeju Island was investigated.Plant composition,soil characteristics,and plant diversity among four land-use types(cropland,green space,neglected land,and residential)were compared.Among the land-use types,croplands had the most diverse plant composition and the highest richness in exotic and native plant species.Croplands,such as tangerine orchards,which are widely distributed throughout Jeju Island,showed the highest plant diversity because of medium intensity disturbance caused by weed removal.The relative cover of H.radicata did not differ between land-use types.However,H.radicata invasion was negatively related with plant species richness,making this invasive species a threat to the biodiversity of native herbs present in land-use areas.H.radicata adapts to areas with a broad range of soil properties and a variety of land-use types.Therefore,it is crucial to monitor land-use types and patterns of plant invasion to guide the implementation of consistent management and conservation strategies for maintaining ecosystem integrity of the transformed habitat in Jeju Island.展开更多
Galinsona parviflora(Asteraceae)is a wide-spread annual weed that is invasive,colonizing new ground where it is able to persist.We studied the bio-mass structure of the G.parviflora population at the module level by u...Galinsona parviflora(Asteraceae)is a wide-spread annual weed that is invasive,colonizing new ground where it is able to persist.We studied the bio-mass structure of the G.parviflora population at the module level by using the methods of field plot invest-igation and weighing at 10 sample plots.Modular bio-mass was calculated and used for analysis of relation-ships between various modules.The results show that there was a positive correlation between plant height and modular biomass,between stem biomass and root biomass,stem biomass and capitulum biomass,above-ground biomass and underground biomass,and lastly,stem biomass and leaf biomass.The preferred model which measured all the relationships was a power function model with absolute coefficients(R2)ranging from 0.6303 to 0.9782.展开更多
Solidago canadensis,a perennial Compositae plant originating from North America,was introduced into China as a horticultural plant in 1935.Under natural condi-tions,S.canadensis allocates large amounts of energy to se...Solidago canadensis,a perennial Compositae plant originating from North America,was introduced into China as a horticultural plant in 1935.Under natural condi-tions,S.canadensis allocates large amounts of energy to sexual reproduction and produces many seeds,which reflects an r-strategy with high seed number and small seed size.In addition,naturalized populations have a great capacity to grow clonally with underground stems.S.canadensis has become an invasive weed in eastern China,and has caused serious damages to agricultural production and ecosystems in several provinces in China.In order to understand the reproductive characteristics of S.canadensis and effectively control its spread,we examined soil conditions,seed charac-teristics,seed germination and the capacity for asexual reproduction in different plant parts.We investigated the population dispersion of S.canadensis in fixed sites for three years,and analyzed the seasonal dynamics of the morphological parameters of the underground parts and the caloric values of different organs of S.canadensis.We also compared differences in the root systems of S.canadensis and composite exotic weeds.The following results were obtained:1)Under natural conditions,the germination season of S.canadensis lasts from March to October,with a peak from April to May.Vegetative growth and asexual reproduction are especially vigorous during summer due to high temperatures and soil drought stress.On the other hand,the rainy season proves suitable for seed germination.Most S.canadensis flower between September and January,and fruit in late October.A mature plant can produce about 20000 seeds.The mean weight of 1000 seeds ranges from 0.045 g to 0.050 g,and the mean seed moisture content ranges from 60%to 80%.The light-winged seeds disperse readily by air,water,vehicles,human activity or through livestock.2)S.canadensis seeds have a wide tolerance for different values of pH,salinity and soil moisture.The mean percent germination of seeds is 30%under suitable conditions.The results of seed germination under various environmental stresses and investigation of soil conditions indicate that well-aerated,slightly acidic soils with low salinity are suitable for the growth of S.canadensis.Additionally,S.canadensis has a high tolerance for contamination by heavy metal elements including Zn,Cu and Pb,but has low accumulation coefficients for these elements.3)S.canadensis reproduces asexually via underground rhizomes and nodes on the stem base to recruit new individuals,and in plants that experience mechanical damage,this repro-ductive strategy is used to produce clonal shoots.The capacity for asexual reproduction among different plant parts rank as follows:underground parts>stem-base(20 cm)>stem-base(30 cm)>stem-base(45 cm)>stem.Further,with increasing mechanical damage,the quantity of shoots produced by the plant decreases.4)The morphological parameters of the root system of S.canadensis including length,surface area,volume,and average diameter are greater than for composite exotic weeds.These parameters indicate that S.canadensis has the physiological potential to widely invade China.5)The aboveground growth rate and most of the underground morphological parameters vary remarkably among the seasons,with a peak normally occurring in September.In August,a fraction of the energy in leaves and stems is allocated underground to increase fine root growth and water uptake during hot weather.Additionally,the seasonal dynamics of the underground morphological parameters and the caloric values of different organs of S.canadensis enhance its reproductive ability.Based on the results above,we conclude that S.canadensis has great invasive potential in China.We suggest that urgent measures should be taken to control its further spread,and to minimize its impact on local plant diversity.展开更多
Global changes such as atmospheric CO_(2)enrichment often facilitate exotic plant invasions and alter soil arbuscular mycorrhizal fungi(AMF)community.However,it is still unclear whether the effects of CO_(2)enrichment...Global changes such as atmospheric CO_(2)enrichment often facilitate exotic plant invasions and alter soil arbuscular mycorrhizal fungi(AMF)community.However,it is still unclear whether the effects of CO_(2)enrichment on exotic plant invasions are associated with its effects on root-AMF symbiosis of invasive and native plants.To address this issue,the annual invasive plant Xanthium strumarium and two phylogenetically related annual natives were compared under ambient and elevated CO_(2)concentrations for three consecutive years.Atmospheric CO_(2)enrichment increased AMF colonization rates for the species only in few cases,and the invader did not benefit more from CO_(2)enrichment in terms of AMF colonization.Under ambient CO_(2)concentration,however,the invader had a higher AMF colonization rate than the natives in the first year of the study,which disappeared in the second and third year of the study due to the increase of AMF colonization rates in the natives but not in the invader.The influences of species,CO_(2)concentrations and planting year on AMF colonization were associated with their effects on both soil nutrient and AMF community,and the former may be more important as it also influenced the latter.Our results indicate that the invader could more quickly form symbiosis with soil AMF,contributing to adaptation and occupation of new habitats,and that it is necessary to consider the roles of AMF and the effects of time when determining the effects of global changes such as atmospheric CO_(2)enrichment on exotic plant invasions.展开更多
基金This research is supported by National Research Foundation of Korea(No:2019R1I1A2A03061067).
文摘Land-use and plant invasion influence biodiversity.Understanding the effects of land-use types and invasive plants on the ecosystem is crucial for better management and the development of strategic plans for increasing biodiversity in Jeju Island,Korea,a designated Biosphere Reserve by the United Nations Education,Scientific,and Cultural Organization.The effect of the most dominant invasive exotic species,Hypochaeris radicata,on the four land-use types of Jeju Island was investigated.Plant composition,soil characteristics,and plant diversity among four land-use types(cropland,green space,neglected land,and residential)were compared.Among the land-use types,croplands had the most diverse plant composition and the highest richness in exotic and native plant species.Croplands,such as tangerine orchards,which are widely distributed throughout Jeju Island,showed the highest plant diversity because of medium intensity disturbance caused by weed removal.The relative cover of H.radicata did not differ between land-use types.However,H.radicata invasion was negatively related with plant species richness,making this invasive species a threat to the biodiversity of native herbs present in land-use areas.H.radicata adapts to areas with a broad range of soil properties and a variety of land-use types.Therefore,it is crucial to monitor land-use types and patterns of plant invasion to guide the implementation of consistent management and conservation strategies for maintaining ecosystem integrity of the transformed habitat in Jeju Island.
基金The research was funded by Liaoning Province Science and Technology Plan Project(No.2004214001)Liaoning Province Education Department Science and Technology Research Project(No.2005275)。
文摘Galinsona parviflora(Asteraceae)is a wide-spread annual weed that is invasive,colonizing new ground where it is able to persist.We studied the bio-mass structure of the G.parviflora population at the module level by using the methods of field plot invest-igation and weighing at 10 sample plots.Modular bio-mass was calculated and used for analysis of relation-ships between various modules.The results show that there was a positive correlation between plant height and modular biomass,between stem biomass and root biomass,stem biomass and capitulum biomass,above-ground biomass and underground biomass,and lastly,stem biomass and leaf biomass.The preferred model which measured all the relationships was a power function model with absolute coefficients(R2)ranging from 0.6303 to 0.9782.
基金This work was supported by the Science and Technology Development Foundation of Shanghai High School(No.04DB17,06ZZ20)the Natural Science Foundation of Zhejiang Province(No.Y505018).
文摘Solidago canadensis,a perennial Compositae plant originating from North America,was introduced into China as a horticultural plant in 1935.Under natural condi-tions,S.canadensis allocates large amounts of energy to sexual reproduction and produces many seeds,which reflects an r-strategy with high seed number and small seed size.In addition,naturalized populations have a great capacity to grow clonally with underground stems.S.canadensis has become an invasive weed in eastern China,and has caused serious damages to agricultural production and ecosystems in several provinces in China.In order to understand the reproductive characteristics of S.canadensis and effectively control its spread,we examined soil conditions,seed charac-teristics,seed germination and the capacity for asexual reproduction in different plant parts.We investigated the population dispersion of S.canadensis in fixed sites for three years,and analyzed the seasonal dynamics of the morphological parameters of the underground parts and the caloric values of different organs of S.canadensis.We also compared differences in the root systems of S.canadensis and composite exotic weeds.The following results were obtained:1)Under natural conditions,the germination season of S.canadensis lasts from March to October,with a peak from April to May.Vegetative growth and asexual reproduction are especially vigorous during summer due to high temperatures and soil drought stress.On the other hand,the rainy season proves suitable for seed germination.Most S.canadensis flower between September and January,and fruit in late October.A mature plant can produce about 20000 seeds.The mean weight of 1000 seeds ranges from 0.045 g to 0.050 g,and the mean seed moisture content ranges from 60%to 80%.The light-winged seeds disperse readily by air,water,vehicles,human activity or through livestock.2)S.canadensis seeds have a wide tolerance for different values of pH,salinity and soil moisture.The mean percent germination of seeds is 30%under suitable conditions.The results of seed germination under various environmental stresses and investigation of soil conditions indicate that well-aerated,slightly acidic soils with low salinity are suitable for the growth of S.canadensis.Additionally,S.canadensis has a high tolerance for contamination by heavy metal elements including Zn,Cu and Pb,but has low accumulation coefficients for these elements.3)S.canadensis reproduces asexually via underground rhizomes and nodes on the stem base to recruit new individuals,and in plants that experience mechanical damage,this repro-ductive strategy is used to produce clonal shoots.The capacity for asexual reproduction among different plant parts rank as follows:underground parts>stem-base(20 cm)>stem-base(30 cm)>stem-base(45 cm)>stem.Further,with increasing mechanical damage,the quantity of shoots produced by the plant decreases.4)The morphological parameters of the root system of S.canadensis including length,surface area,volume,and average diameter are greater than for composite exotic weeds.These parameters indicate that S.canadensis has the physiological potential to widely invade China.5)The aboveground growth rate and most of the underground morphological parameters vary remarkably among the seasons,with a peak normally occurring in September.In August,a fraction of the energy in leaves and stems is allocated underground to increase fine root growth and water uptake during hot weather.Additionally,the seasonal dynamics of the underground morphological parameters and the caloric values of different organs of S.canadensis enhance its reproductive ability.Based on the results above,we conclude that S.canadensis has great invasive potential in China.We suggest that urgent measures should be taken to control its further spread,and to minimize its impact on local plant diversity.
基金supported by the National Natural Science Foundation of China(31971557,31670545 and 31470575)the National Key R&D Program of China(2017YFC1200101).
文摘Global changes such as atmospheric CO_(2)enrichment often facilitate exotic plant invasions and alter soil arbuscular mycorrhizal fungi(AMF)community.However,it is still unclear whether the effects of CO_(2)enrichment on exotic plant invasions are associated with its effects on root-AMF symbiosis of invasive and native plants.To address this issue,the annual invasive plant Xanthium strumarium and two phylogenetically related annual natives were compared under ambient and elevated CO_(2)concentrations for three consecutive years.Atmospheric CO_(2)enrichment increased AMF colonization rates for the species only in few cases,and the invader did not benefit more from CO_(2)enrichment in terms of AMF colonization.Under ambient CO_(2)concentration,however,the invader had a higher AMF colonization rate than the natives in the first year of the study,which disappeared in the second and third year of the study due to the increase of AMF colonization rates in the natives but not in the invader.The influences of species,CO_(2)concentrations and planting year on AMF colonization were associated with their effects on both soil nutrient and AMF community,and the former may be more important as it also influenced the latter.Our results indicate that the invader could more quickly form symbiosis with soil AMF,contributing to adaptation and occupation of new habitats,and that it is necessary to consider the roles of AMF and the effects of time when determining the effects of global changes such as atmospheric CO_(2)enrichment on exotic plant invasions.