期刊文献+
共找到33篇文章
< 1 2 >
每页显示 20 50 100
ZnO-Embedded Expanded Graphite Composite Anodes with Controlled Charge Storage Mechanism Enabling Operation of Lithium-Ion Batteries at Ultra-Low Temperatures
1
作者 Kun Ryu Michael J.Lee +1 位作者 Kyungbin Lee Seung Woo Lee 《Energy & Environmental Materials》 SCIE EI CAS CSCD 2023年第4期31-39,共9页
As lithium(Li)-ion batteries expand their applications,operating over a wide temperature range becomes increasingly important.However,the lowtemperature performance of conventional graphite anodes is severely hampered... As lithium(Li)-ion batteries expand their applications,operating over a wide temperature range becomes increasingly important.However,the lowtemperature performance of conventional graphite anodes is severely hampered by the poor diffusion kinetics of Li ions(Li^(+)).Here,zinc oxide(ZnO) nanoparticles are incorporated into the expanded graphite to improve Li^(+)diffusion kinetics,resulting in a significant improvement in lowtemperature performance.The ZnO-embedded expanded graphite anodes are investigated with different amounts of ZnO to establish the structurecharge storage mechanism-performance relationship with a focus on lowtemperature applications.Electrochemical analysis reveals that the ZnOembedded expanded graphite anode with nano-sized ZnO maintains a large portion of the diffusion-controlled charge storage mechanism at an ultra-low temperature of-50℃ Due to this significantly enhanced Li^(+)diffusion rate,a full cell with the ZnO-embedded expanded graphite anode and a LiNi_(0.88)Co_(0.09)Al_(0.03)O_(2)cathode delivers high capacities of 176 mAh g^(-1)at20℃ and 86 mAh g^(-1)at-50℃ at a high rate of 1 C.The outstanding low-temperature performance of the composite anode by improving the Li^(+)diffusion kinetics provides important scientific insights into the fundamental design principles of anodes for low-temperature Li-ion battery operation. 展开更多
关键词 diffusive and capacitive charge storages expanded graphite composites anode lithium-ion battery low-temperature operation transition metal oxide
下载PDF
Preparation of Expanded Graphite-based Composites by One Step Impregnation 被引量:4
2
作者 刘成宝 陈志刚 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS 2011年第2期254-257,共4页
A new method for preparing expanded graphite-based composites (EGCs) was developed.The obtained samples were characterized by scanning electron microscopy (SEM),transmission electron microscope (TEM) and nitroge... A new method for preparing expanded graphite-based composites (EGCs) was developed.The obtained samples were characterized by scanning electron microscopy (SEM),transmission electron microscope (TEM) and nitrogen adsorption.The experimental results indicated that the EGCs was not simply mechanical mixture of EG and activated carbon,instead the activated carbon was coated on the surface of interior and external pores of the EG in the form of thin carbon layer.The thickness of the activated carbon layer was nearly one hundred nanometers by calculation.It was shown that the higher the impregnation ratio and the activation temperature were,the easier the porosity development would be.And the BET surface area and the total pore volume were as high as 1978 m2/g and 0.9917 cm3/g respectively at 350℃ with an impregnation ratio of 0.9. 展开更多
关键词 expanded graphite expanded graphite-based composites H3PO4 activation pore structure
下载PDF
Formation of NiFe_2O_4/Expanded Graphite Nanocomposites with Superior Lithium Storage Properties 被引量:7
3
作者 Yinglin Xiao Jiantao Zai +1 位作者 Bingbing Tian Xuefeng Qian 《Nano-Micro Letters》 SCIE EI CAS 2017年第3期101-108,共8页
A Ni Fe_2O_4/expanded graphite(Ni Fe_2O_4/EG)nanocomposite was prepared via a simple and inexpensive synthesis method. Its lithium storage properties were studied with the goal of applying it as an anode in a lithium-... A Ni Fe_2O_4/expanded graphite(Ni Fe_2O_4/EG)nanocomposite was prepared via a simple and inexpensive synthesis method. Its lithium storage properties were studied with the goal of applying it as an anode in a lithium-ion battery. The obtained nanocomposite exhibited a good cycle performance, with a capacity of 601 m Ah g^(-1)at a current of 1 A g^(-1)after 800 cycles. This good performance may beattributed to the enhanced electrical conductivity and layered structure of the EG. Its high mechanical strength could postpone the disintegration of the nanocomposite structure,efficiently accommodate volume changes in the Ni Fe_2O_4-based anodes, and alleviate aggregation of Ni Fe_2O_4 nanoparticles. 展开更多
关键词 NIFE2O4 expanded graphite Anode materials Lithium-ion batteries
下载PDF
Electrical Properties of Expanded Graphite Intercalation Compounds 被引量:2
4
作者 Xiuyun CHUAN Department of Geology, Peking University, Beijing 100871, China Daizhang CHEN and Xunruo ZHOU Department of Materials Science, China University of Geosciences, Beijing 100083, China E-mail: cxyljhcj@pku.edu.cn 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2001年第3期371-374,共4页
The intercalation compounds of CuCl2 were synthesized with expanded graphite, whose magni-tude of the electrical conductivity is about 103S.cm1. Their electrical conductivity is 3-6 times as high as that of the expand... The intercalation compounds of CuCl2 were synthesized with expanded graphite, whose magni-tude of the electrical conductivity is about 103S.cm1. Their electrical conductivity is 3-6 times as high as that of the expanded graphite, and about 10 times as high as that of GIC made of the non-expanded graphite. The microanalysis results of chemical compounds by X-ray energy spectrum scanning of TEM testified that the atomic ratio of chloride and cupric is nonstoichoi-metric. The multivalence and exchange of electrovalence of the cupric ion was confirmed by the XPS-ESCA. Vacancy of chlorine anion increases the concentration of charge carrier. The special stage structure, made of graphite and chloride, produces a weak chemical bond belt and provides a carrier space in the direction of GIC layer. These factors develop the electrical properties. 展开更多
关键词 In PH Electrical Properties of expanded graphite Intercalation Compounds graphite ESCA
下载PDF
Insights on the mechanism of Na-ion storage in expanded graphite anode 被引量:1
5
作者 Xiaodan Li Zhibin Liu +7 位作者 Jinliang Li Hang Lei Wenchen Zhuo Wei Qin Xiang Cai Kwun Nam Hui Likun Pan Wenjie Mai 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2021年第2期56-62,I0003,共8页
Currently,Na-ion battery(NIB) has become one of the most potential alternatives for Li-ion batteries due to the safety and low cost.As a promising anode for Na-ion storage,expanded graphite has attracted considerable ... Currently,Na-ion battery(NIB) has become one of the most potential alternatives for Li-ion batteries due to the safety and low cost.As a promising anode for Na-ion storage,expanded graphite has attracted considerable attention.However,the sodiation-desodiation process is still unclear.In our work,we obtain expanded graphite through slight modified Hummer's method and subsequent thermal treatment,which exhibits excellent cycling stability.Even at a high current density of 1 A g^(-1),our expanded graphite still remains a high reversible capacity of 100 mA h g^(-1) after 2600 cycles.Furthermore,we also investigate the electrochemical mechanism of our expanded graphite for Na-ion storage by operando Raman technique,which illuminate the electrochemical reaction during different sodiation-desodiation processes. 展开更多
关键词 expanded graphite Sodiation-desodiation process Operando Raman spectroscopies Na-ion batteries
下载PDF
Mechanism of Fume Suppression and Performance on Asphalt of Expanded Graphite for Pavement under High Temperature Condition 被引量:4
6
作者 黄刚 何兆益 +2 位作者 HUANG Yangcheng ZHOU Chao YUAN Xiaoya 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS 2014年第6期1229-1236,共8页
Fume suppression mechanisms and the effect of expanded graphite on the performance of asphalt were studied by applying infrared spectroscopy(FT-IR), X-ray diffraction(XRD), scanning electron microscopy(SEM) and ... Fume suppression mechanisms and the effect of expanded graphite on the performance of asphalt were studied by applying infrared spectroscopy(FT-IR), X-ray diffraction(XRD), scanning electron microscopy(SEM) and comprehensive thermal analysis(TG, DSC). The experimental results confirm that asphalt which is mixed with expandable graphite will expand in the process of hot mix, and the expanded graphite layer will swell by the light component in the asphalt. The light component in the asphalt and PAHs adsorption on expanded graphite surface or part of the plug in the expanded graphite layer between plates made nucleation crystallization growth. And the Van der Waals force and the bonding of the lattice can effectively restrain the asphalt fume release. Meanwhile, the expanding agent with oxidative can spread into the asphalt, leading to asphalt oxygenated and plastic abate, while the ductility decreases. Expanded graphite, SBS modifier and environment- friendly plasticizers are used to composite modified asphalt. According to asphalt fume release experiment, normal test of asphalt performance, Brookfield viscosity test, RTFOT test and asphalt mixture tests(high temperature stability, low temperature stability, water stability), it has been proven that the modified asphalt’s performance is better than that of matrix asphalt and equivalent to that of SBS modified asphalt. Furthermore, it has good fume suppression effect. 展开更多
关键词 expanded graphite fume suppression mechanism adsorption insert oxidation composite modified asphalt of fume suppression performance
下载PDF
A novel approach for synthesis of expanded graphite and its enhanced lithium storage properties
7
作者 Xianghong Chen Feng Xiao +4 位作者 Yu Lei Haiyin Lu Jiakui Zhang Min Yan Jiantie Xu 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2021年第8期292-298,I0007,共8页
Relying on the great success in portable and smart devices,lithium ion batteries(LIBs)have been considered as one of the leading technologies in electric vehicles(EVs)and stationary energy storage systems(ESSs).With t... Relying on the great success in portable and smart devices,lithium ion batteries(LIBs)have been considered as one of the leading technologies in electric vehicles(EVs)and stationary energy storage systems(ESSs).With the rapid development of EVs and ESSs,the technology upgrading of LIBs is highly demanded.As expected,it requires LIBs with improved power and energy densities[1]. 展开更多
关键词 expanded graphite Holey Anodes Lithium ion batteries Rate capability
下载PDF
Research on Complex Refraction Indices of Expanded Graphite
8
作者 豆正伟 李晓霞 赵纪金 《Defence Technology(防务技术)》 SCIE EI CAS 2011年第4期243-247,共5页
The expanded graphite (EG) with a low density and better extinction performance can be used in military as passive jamming material in IR and MMW bands. Its complex refractive index is a significant parameter for the ... The expanded graphite (EG) with a low density and better extinction performance can be used in military as passive jamming material in IR and MMW bands. Its complex refractive index is a significant parameter for the extinction property. This paper presents a method to calculate the complex refractive index of EG. The reflection spectra of EG pellets were measured in the 0.24-2.6μm and 2.5-25μm bands, respectively. Based on the measurement results, the complex refractive index of EG in 5-10μm band was calculated by using Kramers-Kronig(K-K) relation and Bruggeman effective medium theory, and then the errors were analyzed. The results indicate that it is feasible to calculate the complex refractive index of EG based on its IR reflection spectra data. 展开更多
关键词 non-metallic inorganic material expanded graphite complex refractive index Kramers-Kronig relation effective medium theory
下载PDF
A graphitized expanded graphite cathode for aluminum-ion battery with excellent rate capability
9
作者 Xiaozhong Dong Hao Chen +4 位作者 Haiwen Lai Liyong Wang Jiaqing Wang Wenzhang Fang Chao Gao 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2022年第3期38-44,I0002,共8页
Aluminum-ion battery(AIB)is very promising for its safety and large current charge–discharge.However,it is challenging to build a high-performance AIB system based on low-cost materials especially cathode&electro... Aluminum-ion battery(AIB)is very promising for its safety and large current charge–discharge.However,it is challenging to build a high-performance AIB system based on low-cost materials especially cathode&electrolyte.Despite the low-cost expanded graphite-triethylaminehydrochloride(EG-ET)system has been improved in cycle performance,its rate capability still remains a gap with the expensive graphene-alkylimidazoliumchloride AIB system.In this work,we treated the cheap EG appropriately through an industrial high-temperature process,employed the obtained EG3K(treated at 3000℃)cathode with AlCl_(3)-ET electrolyte,and built a novel,high-rate capability and double-cheap AIB system.The new EG3K-ET system achieved the cathode capacity of average 110 m Ah g^(-1)at 1 A g^(-1)with 18,000cycles,and retained the cathode capacity of 100 m Ah g^(-1)at 5 A g^(-1)with 27,500 cycles(fast charging of 72 s).Impressively,we demonstrated that a battery pack(EG3K-ET system,12 m Ah)had successfully driven the Model car running 100 m long.In addition,it was confirmed that the improvement of rate capability in the EG3K-ET system was mainly derived by deposition,and its capacity contribution ratio was about 53.7%.This work further promoted the application potential of the low-cost EG-ET AIB system. 展开更多
关键词 Aluminum-ion battery expanded graphite Triethylamine hydrochloride
下载PDF
Palmitic Acid-Lauric Acid/Expanded Graphite as Form-Stable Composite Phase Change Material for Low-Temperature Energy Storage Applications
10
作者 Adel Elgadi Chan Mieow Kee Tan Yong Chai 《Journal of Harbin Institute of Technology(New Series)》 CAS 2022年第5期41-48,共8页
Low thermal conductivity of binary fatty acid mixture of palmitic and lauric acids(PA-LA)within the value range of 0.15-0.17 W/(m·K)restricts its wide utilization as thermal energy storage material in the active ... Low thermal conductivity of binary fatty acid mixture of palmitic and lauric acids(PA-LA)within the value range of 0.15-0.17 W/(m·K)restricts its wide utilization as thermal energy storage material in the active regime of solar heating applications at low operating temperatures.Nevertheless,this mixture as phase change material(PCM)has a suitable phase-change temperature and heat of 36℃and 176.3 J/g,respectively.Hence,the objective of this study is to formulate a novel form-stable composite PCM with the PA-LA mixture and expanded graphite(EG)as a thermal enhancer.PA-LA eutectic mixture with varied concentrations of EG was prepared and characterized.The thermal conductivity of PA-LA/EG increased gradually with the mass of EG.Optimum thermal properties were observed in PA-LA/(5%EG)composite,where its melting(T_(m)),freezing temperature(T_(t)),latent melting heat and thermal conductivity was 35.53℃,34.84℃,174 J/g,and 1.19 W/(m·K),respectively.Also,the composite PCM is characterized by good chemical-thermal stability and thermal reliability for long-term usage.In conclusion,it can be utilized as a prospective form-stable PCM for thermal energy storage in solar heating systems,overheat treatment systems,and other thermal storage applications at low operating temperatures. 展开更多
关键词 binary mixture PCM of fatty acid expanded graphite thermal conductivity thermal reliability and stability
下载PDF
Structure,Characterization and Thermal Properties of the Form-Stable Paraffin/High-Density Polyethylene/Expanded Graphite/Epoxy Resin Composite PCMs for Thermal Energy Storage
11
作者 MOMBEKI PEA Hamir Johan AN Zhoujian +2 位作者 DU Xiaoze SHI Tianlu ZHANG Dong 《Journal of Thermal Science》 SCIE EI CAS CSCD 2023年第6期2104-2114,共11页
The form-stable paraffin/high-density polyethylene/expanded graphite/epoxy resin composite phase change materials(CPCMs),exhibiting suitable thermal properties,including low melting temperature,high conductivity and h... The form-stable paraffin/high-density polyethylene/expanded graphite/epoxy resin composite phase change materials(CPCMs),exhibiting suitable thermal properties,including low melting temperature,high conductivity and high phase change enthalpy,was developed in this work.Herein,paraffin(PA)was utilized as a core PCM.High-density polyethylene(HDPE)was utilized for the shape stabilization and preventing the PCMs leakage.Expanded graphite(EG)was used to increase its thermal conductivity and act also in the porous supporting material.Epoxy resin(ER)was used to provide flexible encapsulated scaffold morphology and keep a highly tight network structure of the PCMs.However,the physical architecture,the chemical architecture and thermal behavior properties of specimens were investigated by using the spectroscopy and calorimetry techniques.The scanning electron microscope(SEM),X-ray diffraction(XRD)and fourier transform infrared spectrometer FTIR tests have shown good uniformity structure and good compatibility of components.In addition,the thermal conductivity tests revealed that the thermal conductivity of PA,initially 0.31 W/(m·K)improved up to 1.9 times by adding the 6 wt%mass fraction of EG in composite PCMs.Furthermore,the differential scanning calorimeter(DSC)measurements indicated that PA melting enthalpy,initially 231 J/g decreased up to 125 J/g with the increase of the amount of HDPE which was due to the limitation caused by the atomic network constructed by the base material.The thermogravimetric analyzer(TGA)and leakage-proof revealed the enhancement of the degradation of PA with the raise of amount of the HDPE into the CPCMs.Therefore,the proposed form-stable CPCMs are a great candidate for the thermal regulation and thermal energy storage employment. 展开更多
关键词 form-stable CPCMs PARAFFIN expanded graphite high density polyethylene epoxy resin thermal energy storage
原文传递
Preparation and Thermal Properties of a Novel Modified Ammonium Alum/Expanded Graphite Composite Phase Change Material
12
作者 YIN Shaowu HAN Jiawei +3 位作者 ZHANG Chao KANG Peng TONG Lige WANG Li 《Journal of Thermal Science》 SCIE EI CAS CSCD 2023年第6期2093-2103,共11页
Thermal energy storage(TES)using phase change materials(PCMs)is a powerful solution to the improvement of energy efficiency.The application of Ammonium alum(A-alum,NH4Al(SO_(4))_(2)·12H_(2)O)in the latent thermal... Thermal energy storage(TES)using phase change materials(PCMs)is a powerful solution to the improvement of energy efficiency.The application of Ammonium alum(A-alum,NH4Al(SO_(4))_(2)·12H_(2)O)in the latent thermal energy storage(LTES)systems is hampered due to its high supercooling and low thermal conductivity.In this work,modified A-alum(M-PCM)containing different nucleating agents was prepared and further adsorbed in expanded graphite(EG)to obtain composite phase change material(CPCM)to overcome the disadvantages of A-alum.Thermal properties,thermal cycle stability,microstructure and chemical compatibility of CPCM were characterized by differential scanning calorimetry,thermal constant analysis,scanning electron microscopy,X-ray diffraction and Fourier transform infrared spectroscopy.The cold rewarming phenomenon of CPCM was established and explained.Results showed that the latent heat and melting point of CPCM were 187.22 J/g and 91.54℃,respectively.The supercooling of CPCM decreased by 9.61℃,and thermal conductivity increased by 27 times compared with pure A-alum.Heat storage and release tests indicated that 2 wt%calcium chloride dihydrate(CCD,CaCl_(2)·2H_(2)O)was the optimum nucleating agent for A-alum.The result of TG and 30 thermal cycles revealed that CPCM exhibited favorable thermal stability and reliability during the operating temperature.The prepared modified A-alum/EG CPCM has a promising application prospect for LTES. 展开更多
关键词 composite phase change material thermal property ammonium alum expanded graphite SUPERCOOLING thermal conductivity
原文传递
Design of a stearic acid/boron nitride/expanded graphite multifiller synergistic composite phase change material for thermal energy storage
13
作者 Ci Ao Suying Yan +2 位作者 Long Zhao Xiaoyan Zhao Yuting Wu 《Energy and Built Environment》 2023年第5期557-567,共11页
In order to solve the problems of low thermal conductivity and easy liquid leakage of a stearic acid(SA),the composite phase change material(PCM)was prepared by adding boron nitride(BN)and expanded graphite(EG)to melt... In order to solve the problems of low thermal conductivity and easy liquid leakage of a stearic acid(SA),the composite phase change material(PCM)was prepared by adding boron nitride(BN)and expanded graphite(EG)to melted SA,and its thermal conductivity,crystal structure,chemical stability,thermal stability,cycle stability,leakage characteristics,heat storage/release characteristics,and temperature response characteristics were char-acterized.The results showed that the addition of BN and EG significantly improved the thermal conductivity of the material,and they efficiently adsorbed melted SA.The maximum load of SA was 76 wt.%and there was almost no liquid leakage.Moreover,the melting enthalpy and temperature were 154.20 J·g^(−1) and 67.85℃,re-spectively.Compared with pure SA,the SA/BN/EG composite showed a lower melting temperature and a higher freezing temperature.In addition,when the mass fraction of BN and EG was 12 wt.%,the thermal conductivity of the composite was 6.349 W·m^(−1)·K^(−1),which was 18.619 times that of SA.More importantly,the composite showed good stability for 50 cycles of heating and cooling,and the SA/BN/EG-12 hardly decomposes below 200℃,which implies that the working performance of the composite PCM is relatively stable within the tem-perature range of 100℃.Therefore,the composite can exhibit excellent thermal stability in the field of building heating. 展开更多
关键词 Stearic acid Boron nitride expanded graphite Phase change material Thermal properties
原文传递
Performance and mechanism of Cr(Ⅵ)removal by zero-valent iron loaded onto expanded graphite 被引量:11
14
作者 Congbin Xu Wenjie Yang +3 位作者 Weijiang Liu Hongliang Sun Chunlei Jiao Ai-jun Lin 《Journal of Environmental Sciences》 SCIE EI CAS CSCD 2018年第5期14-22,共9页
Zero-valent iron(ZⅥ) was loaded on expanded graphite(EG) to produce a composite material(EG-ZⅥ) for efficient removal of hexavalent chromium(Cr(Ⅵ)). EG and EG-ZⅥ were characterized by X-ray diffraction(... Zero-valent iron(ZⅥ) was loaded on expanded graphite(EG) to produce a composite material(EG-ZⅥ) for efficient removal of hexavalent chromium(Cr(Ⅵ)). EG and EG-ZⅥ were characterized by X-ray diffraction(XRD), scanning electron microscopy(SEM),Fourier-transform infrared(FTIR) spectroscopy and Brunauer–Emmett–Teller(BET) analysis. EG-ZⅥ had a high specific surface area and contained sub-micron sized particles of zero-valent iron. Batch experiments were employed to evaluate the Cr(Ⅵ) removal performance. The results showed that the Cr(Ⅵ) removal rate was 98.80% for EG-ZⅥ,which was higher than that for both EG(10.00%) and ZⅥ(29.80%). Furthermore, the removal rate of Cr(Ⅵ) by EG-ZⅥ showed little dependence on solution p H within a p H range of 1–9.Even at pH 11, a Cr(Ⅵ) removal rate of 62.44% was obtained after reaction for 1 hr. EG-ZⅥ could enhance the removal of Cr(Ⅵ) via chemical reduction and physical adsorption,respectively. X-ray photoelectron spectroscopy(XPS) was used to analyze the mechanisms of Cr(Ⅵ) removal, which indicated that the ZⅥ loaded on the surface was oxidized, and the removed Cr(Ⅵ) was immobilized via the formation of Cr(III) hydroxide and Cr(III)–Fe(III)hydroxide/oxyhydroxide on the surface of EG-ZⅥ. 展开更多
关键词 Zero-valent iron(ZVI) expanded graphite(EG) Cr(Ⅵ) removalMechanism
原文传递
Constructing mild expanded graphite microspheres by pressurized oxidation combined microwave treatment for enhanced lithium storage 被引量:3
15
作者 Can-Liang Ma Zhen-Hui Hu +3 位作者 Ning-Jing Song Yun Zhao Yan-Zhen Liu Hui-Qi Wang 《Rare Metals》 SCIE EI CAS CSCD 2021年第4期837-847,共11页
The modified graphite anode materials have some prominent advantages over other anode materials in the industrial applications.A novel simple and gentle method is proposed to synthesize the mild expanded graphite micr... The modified graphite anode materials have some prominent advantages over other anode materials in the industrial applications.A novel simple and gentle method is proposed to synthesize the mild expanded graphite microspheres(MEGMs) from flake graphite spheres through a combined modified pressurized oxidation combined with the microwave treatment.The microstructural results demonstrate that moderately expanded MEGMs with an expansion volume between 4 and 10 ml·g^(-1)exhibit a highly microporous structure with an enlarged interlayer spacing,a decreased microcrystalline size,as well as an increased number of functional groups on the surface,resulting in the increased storage sites and spaces for lithium ions and the enhanced diffusion rate of lithium ions.When used as the anode material for lithium-ion batteries,the MEGM-T75t30 obtained by oxidation treatment at 75℃ for 30 min followed by microwave irradiation for expansion displays a high reversible capacity of 446.7 mAh·g^(-1) at 100 mA·g^(-1) after 100 cycles and excellent rate performance(330 and 116 mAh·g^(-1) at 800 and 3200 mA·g^(-1),respectively).Therefore,the MEGMs prepared by this convenient and mild method show excellent electrochemical properties and good application potential. 展开更多
关键词 Pressurized oxidation Microwave treatment Mild expanded graphite microspheres Microstructure Graphitic anode material Lithium-ion battery
原文传递
Comparative tribological behavior of friction composites containing natural graphite and expanded graphite 被引量:1
16
作者 Hongyun JIN Keke ZHOU +8 位作者 Zhengjia JI Xiaocong TIAN Ying CHEN Luhua LU Yazhou REN Chunhui XU Shanshan DUAN Jiangyu LI Shu-en HOU 《Friction》 SCIE CSCD 2020年第4期684-694,共11页
In this study, expanded graphite and natural graphite were introduced into resin-based friction materials, and the tribological behavior of the composites was investigated. The tribo-performance of the two friction co... In this study, expanded graphite and natural graphite were introduced into resin-based friction materials, and the tribological behavior of the composites was investigated. The tribo-performance of the two friction composites was evaluated using a constant speed friction tester. The results showed that the expanded graphite composite (EGC) displayed better lubricity in both the fading and the recovery processes. The wear rate of the EGC decreased by 22.43%more than that of the natural graphite composite (NGC). In the fading process, and the EGC enhanced the stability of the coefficient of friction. The recovery maintenance rate of the NGC was 4.66% higher than that of the EGC. It can be concluded that expanded graphite plays an important role in the formation of a stable contact plateau and can effectively reduce the wear. 展开更多
关键词 natural graphite expanded graphite tribological behavior wear mechanism
原文传递
Organic salt-assisted liquid-phase shear exfoliation of expanded graphite into graphene nanosheets 被引量:1
17
作者 Bin Liang Kangwei Liu +4 位作者 Peng Liu Long Qian Guangyao Zhao Weisheng Pan Chaojie Chen 《Journal of Materiomics》 SCIE EI 2021年第6期1181-1189,共9页
How to improve the efficiency of liquid-phase shear exfoliation(LPSE)for mass production of large-size graphene nanosheets still remains an ongoing challenge.In this work,we have developed a LPSE method using a rotor-... How to improve the efficiency of liquid-phase shear exfoliation(LPSE)for mass production of large-size graphene nanosheets still remains an ongoing challenge.In this work,we have developed a LPSE method using a rotor-stator mixer.It is quite simple and efficient by exfoliation of expanded graphite(EG)in Nmethyl-2-pyrrolidone(NMP)with the assistance of organic salts including sodium citrate,potassium citrate and sodium tartrate.The LPSE of EG in NMP can provide improved yields,up to 6 times as high as values from exfoliation of natural flake graphite(NFG).The additive of organic salts in NMP can make a further improvement in graphene yields,1.5 times higher than that obtained only in NMP.Remarkably,the yields of the as-exfoliated graphene are as high as 10%under optimal conditions,and up to 50%after multiple-cycle exfoliation.Organic salts in LPSE act as analogue grinding aids enhancing the applied shear forces and thus contributing to the improved efficiency of LPSE,but they do not intercalate into the interplanar spaces of graphite.This facile LPSE method should have excellent potential in the large scale production of graphene nanosheets for numerous applications. 展开更多
关键词 GRAPHENE Liquid-phase shear exfoliation Organic salt expanded graphite
原文传递
Experimental research and numerical simulation of the thermal performance of a tube-fin cold energy storage unit using water/modified expanded graphite as the phase change material 被引量:3
18
作者 Jinxin Feng Ziye Ling +2 位作者 Jiangchang Huang Xiaoming Fang Zhengguo Zhang 《Energy Storage and Saving》 2022年第2期71-79,共9页
In this study,experimental and numerical investigations were conducted on a tube-fin heat-exchanger latent-heat cold energy storage unit.The fin side of the heat exchanger was filled with water as the energy storage m... In this study,experimental and numerical investigations were conducted on a tube-fin heat-exchanger latent-heat cold energy storage unit.The fin side of the heat exchanger was filled with water as the energy storage medium,and modified expanded graphite(MEG)was employed to improve the thermal characteristics of water.The water contact angle of the expanded graphite decreased from 106.31°to 0°,and the hydrophilicity and the absorption rate of water significantly improved after the modification.Moreover,the experimental analyses of the charge/discharge process showed that the cooling capacity of the system filled with 90 wt.%water/MEG was 80.8%of that of pure water,whereas its cooling time was only 69.7%of that of pure water.The average power increased by 15.9%compared with that of water.The system filled with 90 wt.%water/MEG completed two energy charging and discharging cycles,whereas the system filled with water completed only 1.5 cycles within 15000 s.Furthermore,the effects of the flow rate and inlet temperature of the heat transfer fluid on the charging process were explored.Finally,a numerical model was built and validated to investigate the phase change behavior and the effect of the structure size on the performance of the system.The heat-exchanger fin spacing had no significant effect on the cold energy storage unit,whereas the vertical spacing of the tube pass had the highest effect.It can be concluded that the heat exchanger combined with high-thermal-conductivity water/MEG exhibits better energy storage capacity and working power,showing a wide application prospect in the field of cold energy storage. 展开更多
关键词 Cold energy storage Tube-fin heat exchanger Phase change material WATER Modified expanded graphite
原文传递
Multiple structure graphite stabilized stearic acid as composite phase change materials for thermal energy storage 被引量:2
19
作者 Xinbo Zhao Chuanchang Li +3 位作者 Kaihao Bai Baoshan Xie Jian Chen Qingxia Liu 《International Journal of Mining Science and Technology》 SCIE EI CAS CSCD 2022年第6期1419-1428,共10页
This paper used 3 types of graphite with different physical structures as the porous matrix to prepare composite phase change materials(PCMs),and investigated their photo-thermal conversion performance and application... This paper used 3 types of graphite with different physical structures as the porous matrix to prepare composite phase change materials(PCMs),and investigated their photo-thermal conversion performance and application in battery thermal management.Multiple structure graphite minerals,including microcrystalline graphite(MG),scale graphite(SG),and expanded graphite(EG)were used as porous matrix,while stearic acid(SA)acts as the phase change material.The vacuum impregnation method was applied to prepare SA/MG,SA/SG,SA/EG,and SA/MG1,and SA/EG1was/were prepared by the ethyl alcohol method.Results show that the thermal conductivities of all composite phase change materials were 10.82 to 22.06 times higher than that of the pure SA.Thermogravimetric(TG)analysis showed that the loadages of SA were 43.61%,18.74%,and 92.66%for SA/MG,SA/SG,and SA/EG respectively.The load rates of SA were 18.98%and 18.88%for SA/MG1 and SA/EG1,respectively.For the 3 types of graphite materials of different dimensions,the BET(Brunauer,Emmett,and Teller)surface area determines the maximum load of SA.The Fourier-transform infrared(FTIR)and X-ray diffraction(XRD)results indicated that there was good compatibility between the SA and the supports.The SA/EG1 has better thermophysical properties in heat energy storage and release process.The thermal infrared images show that SA/EG1 has higher sensitivity to the temperature changes.SA/EG1 has better photo-heat conversion performance than SA/SG and SA/MG1 attributed to the multilayer structure of EG.SA/EG has better thermal management performance in the Li-ion batteries discharge process. 展开更多
关键词 Phase change material Microcrystalline graphite Scale graphite expanded graphite Photo-thermal conversion Thermal management
下载PDF
Preparation of graphite nanosheets in different solvents by sand milling and their enhancement on tribological properties of lithium-based grease
20
作者 Jin Zhang Aili Wang Hengbo Yin 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2020年第4期1177-1186,共10页
Graphite nanosheets with the average thicknesses ranging from 24.4 to 48.9 nm were prepared with the use of expanded graphite as the raw material by sand milling in deionized water,anhydrous ethanol,glycerol,and 1,4-b... Graphite nanosheets with the average thicknesses ranging from 24.4 to 48.9 nm were prepared with the use of expanded graphite as the raw material by sand milling in deionized water,anhydrous ethanol,glycerol,and 1,4-butanediol,respectively.Anhydrous ethanol favored the formation of graphite nanosheets with a smaller average thickness.When the graphite nanosheets with the content of 2 wt%were added in lithium-based grease,the average friction coefficient decreased by 27%as compared with the pure lithium-based grease.The weld point and load wear index were 1.6 and 1.4 times those of the pure lithium-based grease,respectively.The tribological properties of the graphite nanosheet-containing lithium-based grease were comparable with those of the graphene-containing lithium-based grease. 展开更多
关键词 graphite nanosheets expanded graphite Lithium-based grease Tribological property
下载PDF
上一页 1 2 下一页 到第
使用帮助 返回顶部