This paper presents a new computational method for forward uncertainty quantification(UQ)analyses on large-scale structural systems in the presence of arbitrary and dependent random inputs.The method consists of a gen...This paper presents a new computational method for forward uncertainty quantification(UQ)analyses on large-scale structural systems in the presence of arbitrary and dependent random inputs.The method consists of a generalized polynomial chaos expansion(GPCE)for statistical moment and reliability analyses associated with the stochastic output and a static reanalysis method to generate the input-output data set.In the reanalysis,we employ substructuring for a structure to isolate its local regions that vary due to random inputs.This allows for avoiding repeated computations of invariant substructures while generating the input-output data set.Combining substructuring with static condensation further improves the computational efficiency of the reanalysis without losing accuracy.Consequently,the GPCE with the static reanalysis method can achieve significant computational saving,thus mitigating the curse of dimensionality to some degree for UQ under high-dimensional inputs.The numerical results obtained from a simple structure indicate that the proposed method for UQ produces accurate solutions more efficiently than the GPCE using full finite element analyses(FEAs).We also demonstrate the efficiency and scalability of the proposed method by executing UQ for a large-scale wing-box structure under ten-dimensional(all-dependent)random inputs.展开更多
In this paper the authors give a definite meaning to any formal trigonometrical series and generalize it to all abstract Hilbert space. Then in the case L-2(-infinity + infinity) they discussed extensively the general...In this paper the authors give a definite meaning to any formal trigonometrical series and generalize it to all abstract Hilbert space. Then in the case L-2(-infinity + infinity) they discussed extensively the generalized expansion problem by Hermite functions, and applied to a non-strictly nonlinear hyperbolic system.展开更多
In this paper, based on a new more general ansitz, a new algebraic method, named generalized Riccati equation rational expansion method, is devised for constructing travelling wave solutions for nonlinear evolution eq...In this paper, based on a new more general ansitz, a new algebraic method, named generalized Riccati equation rational expansion method, is devised for constructing travelling wave solutions for nonlinear evolution equations with nonlinear terms of any order. Compared with most existing tanh methods for finding travelling wave solutions, the proposed method not only recovers the results by most known algebraic methods, but also provides new and more general solutions. We choose the generalized Burgers-Fisher equation with nonlinear terms of any order to illustrate our method. As a result, we obtain several new kinds of exact solutions for the equation. This approach can also be applied to other nonlinear evolution equations with nonlinear terms of any order.展开更多
A new framework of Gaussian white noise calculus is established, in line with generalized expansion in [3, 4, 7]. A suitable frame of Fock expansion is presented on Gaussian generalized expansion functionals being int...A new framework of Gaussian white noise calculus is established, in line with generalized expansion in [3, 4, 7]. A suitable frame of Fock expansion is presented on Gaussian generalized expansion functionals being introduced here, which provides the integral kernel operator decomposition of the second quantization of Koopman operators for chaotic dynamical systems, in terms of annihilation operators partial derivative(t) and its dual, creation operators partial derivative(t)*.展开更多
In nonlinear physics, it is very difficult to study interactions among different types of nonlinear waves. In this paper,the nonlocal symmetry related to the truncated Painleve′ expansion of the(2+1)-dimensional B...In nonlinear physics, it is very difficult to study interactions among different types of nonlinear waves. In this paper,the nonlocal symmetry related to the truncated Painleve′ expansion of the(2+1)-dimensional Burgers equation is localized after introducing multiple new variables to extend the original equation into a new system. Then the corresponding group invariant solutions are found, from which interaction solutions among different types of nonlinear waves can be found.Furthermore, the Burgers equation is also studied by using the generalized tanh expansion method and a new Ba¨cklund transformation(BT) is obtained. From this BT, novel interactive solutions among different nonlinear excitations are found.展开更多
The generalized Riccati equation vational expansion method is extended in this paper. Several exact solutions for the generalized Burgers-Fisher equation with variable coefficients are obtained by this method, and som...The generalized Riccati equation vational expansion method is extended in this paper. Several exact solutions for the generalized Burgers-Fisher equation with variable coefficients are obtained by this method, and some of which are derived for the first time. It is concluded from the results that this approach is simple and efficient even in solving partial differential equations with variable coefficients.展开更多
In this paper, based on the generalized Jacobi elliptic function expansion method, we obtain abundant new explicit and exact solutions of the Klein-Gordon- Zakharov equations, which degenerate to solitary wave solutio...In this paper, based on the generalized Jacobi elliptic function expansion method, we obtain abundant new explicit and exact solutions of the Klein-Gordon- Zakharov equations, which degenerate to solitary wave solutions and triangle function solutions in the limit cases, showing that this new method is more powerful to seek exact solutions of nonlinear partial differential equations in mathematical physics.展开更多
In this paper, a new generalized Jacobi elliptic function expansion method based upon four new Jacobi elliptic functions is described and abundant solutions of new Jacobi elliptic functions for the generalized Nizhnik...In this paper, a new generalized Jacobi elliptic function expansion method based upon four new Jacobi elliptic functions is described and abundant solutions of new Jacobi elliptic functions for the generalized Nizhnik-Novikov-Veselov equations are obtained. It is shown that the new method is much more powerful in finding new exact solutions to various kinds of nonlinear evolution equations in mathematical physics.展开更多
In this paper, a new generalized compound Riccati equations rational expansion method (GCRERE) is proposed. Compared with most existing rational expansion methods and other sophisticated methods, the proposed method...In this paper, a new generalized compound Riccati equations rational expansion method (GCRERE) is proposed. Compared with most existing rational expansion methods and other sophisticated methods, the proposed method is not only recover some known solutions, but also find some new and general complexiton solutions. Being concise and straightforward, it is applied to the (2+1)-dimensional Burgers equation. As a result, eight families of new exact analytical solutions for this equation are found. The method can also be applied to other nonlinear partial differential equations.展开更多
基金Project supported by the National Research Foundation of Korea(Nos.NRF-2020R1C1C1011970 and NRF-2018R1A5A7023490)。
文摘This paper presents a new computational method for forward uncertainty quantification(UQ)analyses on large-scale structural systems in the presence of arbitrary and dependent random inputs.The method consists of a generalized polynomial chaos expansion(GPCE)for statistical moment and reliability analyses associated with the stochastic output and a static reanalysis method to generate the input-output data set.In the reanalysis,we employ substructuring for a structure to isolate its local regions that vary due to random inputs.This allows for avoiding repeated computations of invariant substructures while generating the input-output data set.Combining substructuring with static condensation further improves the computational efficiency of the reanalysis without losing accuracy.Consequently,the GPCE with the static reanalysis method can achieve significant computational saving,thus mitigating the curse of dimensionality to some degree for UQ under high-dimensional inputs.The numerical results obtained from a simple structure indicate that the proposed method for UQ produces accurate solutions more efficiently than the GPCE using full finite element analyses(FEAs).We also demonstrate the efficiency and scalability of the proposed method by executing UQ for a large-scale wing-box structure under ten-dimensional(all-dependent)random inputs.
文摘In this paper the authors give a definite meaning to any formal trigonometrical series and generalize it to all abstract Hilbert space. Then in the case L-2(-infinity + infinity) they discussed extensively the generalized expansion problem by Hermite functions, and applied to a non-strictly nonlinear hyperbolic system.
基金The project partially supported by the State Key Basic Research Program of China under Grant No. 2004CB318000
文摘In this paper, based on a new more general ansitz, a new algebraic method, named generalized Riccati equation rational expansion method, is devised for constructing travelling wave solutions for nonlinear evolution equations with nonlinear terms of any order. Compared with most existing tanh methods for finding travelling wave solutions, the proposed method not only recovers the results by most known algebraic methods, but also provides new and more general solutions. We choose the generalized Burgers-Fisher equation with nonlinear terms of any order to illustrate our method. As a result, we obtain several new kinds of exact solutions for the equation. This approach can also be applied to other nonlinear evolution equations with nonlinear terms of any order.
文摘A new framework of Gaussian white noise calculus is established, in line with generalized expansion in [3, 4, 7]. A suitable frame of Fock expansion is presented on Gaussian generalized expansion functionals being introduced here, which provides the integral kernel operator decomposition of the second quantization of Koopman operators for chaotic dynamical systems, in terms of annihilation operators partial derivative(t) and its dual, creation operators partial derivative(t)*.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.11347183,11275129,11305106,11365017,and 11405110)the Natural Science Foundation of Zhejiang Province of China(Grant Nos.Y7080455 and LQ13A050001)
文摘In nonlinear physics, it is very difficult to study interactions among different types of nonlinear waves. In this paper,the nonlocal symmetry related to the truncated Painleve′ expansion of the(2+1)-dimensional Burgers equation is localized after introducing multiple new variables to extend the original equation into a new system. Then the corresponding group invariant solutions are found, from which interaction solutions among different types of nonlinear waves can be found.Furthermore, the Burgers equation is also studied by using the generalized tanh expansion method and a new Ba¨cklund transformation(BT) is obtained. From this BT, novel interactive solutions among different nonlinear excitations are found.
基金Supported by the National Basic Research Project of China (973 Program No. 2006CB705500)by the National Natural Science Foundation of China under Grant Nos. 10975216, 10635040by the Specialized Research Fund for the Doctoral Program of Higher Education of China under Grant No. 20093402110032
文摘The generalized Riccati equation vational expansion method is extended in this paper. Several exact solutions for the generalized Burgers-Fisher equation with variable coefficients are obtained by this method, and some of which are derived for the first time. It is concluded from the results that this approach is simple and efficient even in solving partial differential equations with variable coefficients.
基金The Scientific Research Foundation (KXJ08047) of NanJing Institute of Technology
文摘In this paper, based on the generalized Jacobi elliptic function expansion method, we obtain abundant new explicit and exact solutions of the Klein-Gordon- Zakharov equations, which degenerate to solitary wave solutions and triangle function solutions in the limit cases, showing that this new method is more powerful to seek exact solutions of nonlinear partial differential equations in mathematical physics.
基金The Scientific Research Foundation (QKJA2010011) of Nanjing Institute of Technology
文摘In this paper, a new generalized Jacobi elliptic function expansion method based upon four new Jacobi elliptic functions is described and abundant solutions of new Jacobi elliptic functions for the generalized Nizhnik-Novikov-Veselov equations are obtained. It is shown that the new method is much more powerful in finding new exact solutions to various kinds of nonlinear evolution equations in mathematical physics.
基金Partially supported by the National Key Basic Research Project of China under the Grant(2004CB318000).
文摘In this paper, a new generalized compound Riccati equations rational expansion method (GCRERE) is proposed. Compared with most existing rational expansion methods and other sophisticated methods, the proposed method is not only recover some known solutions, but also find some new and general complexiton solutions. Being concise and straightforward, it is applied to the (2+1)-dimensional Burgers equation. As a result, eight families of new exact analytical solutions for this equation are found. The method can also be applied to other nonlinear partial differential equations.