Silicon is considered to be one of the most promising anode materials for lithium-ion batteries(LIBs),but its application is limited by the large volume expansion during alloying and dealloying.The constructing of a h...Silicon is considered to be one of the most promising anode materials for lithium-ion batteries(LIBs),but its application is limited by the large volume expansion during alloying and dealloying.The constructing of a high-performance solid electrolyte interface(SEI) film on the surface of the anode material is considered to be one of the effective strategies to mitigate volume expansion of silicon-based anode.In this study,an intermittent discharge strategy which helps to improve the utilization efficiency of electrolyte additive of lithium difluorobisoxalate phosphate(LiDFBOP) is proposed to construct a highly conductive and dense SEI film.The results of electrochemical and physical characterization and theoretical calculations show that the intermittent discharge in the voltage range from open circuit voltage(OCV) to 1.8 V facilitates the diffusion of the soluble products,creates the conditions for the repeated direct contact between Si@C anode and LiDFBOP additive,increases the decomposition of LiDFBOP additive,and thus produces a uniform,dense and inorganics-rich(Li_(2)C_(2)O_(4),LiF and Li_(x)PO_yF_z) SEI film.Subsequently,this SEI film helps to ensure the even intercalation/de-intercalation of Li^(+) in the SEI film and the homogeneous diffusion of Li^(+) inside the Si particles,decreasing the internal stresses and anisotropic phase transitions,maintaining the integrity of Si particles,inhibiting the volume expansion and thu s improving the electrochemical performance of cells.This study not only improves the utilization efficiency of expensive additives through a simply and low-cost method,but also enriches the strategy to improve the electrochemical performance of Si@C anode through interfacial engineering.展开更多
When a big landside occurs, source material can change into loose deposit during its runout, causing the increase of the total landslide volume to some extent. Such changes can influence the quantification of seismic ...When a big landside occurs, source material can change into loose deposit during its runout, causing the increase of the total landslide volume to some extent. Such changes can influence the quantification of seismic landslides. The objective of this paper was to study the volume expansion rate of landslides based on the data of 1417 co-seismic landslides triggered by the 2008 Wenchuan, China Mw 7.9 earthquake. We also analyzed the correlations between this rate and landslide geometric parameters(volume, height(H), length-width ratio(L/W), length-height ratio(L/H)), and environmental factors(peak ground acceleration(PGA), lithology, slope angle and aspect). The results show that the total source volume of the 1417 landslides is 1248 million m3, while the total volume of the deposit is 1501 million m3, which means the total volume expanding rate(Et) is 20.3% with the average volume expansion rate(Ea) 22.6%. The analysis indicates that volume expansion rate generally decreases with the increasing volume and height of landslides, while becoming larger with increasing L/H and L/W. Besides, the volume expansion rate is closely related to the landslide type and the volume scale of landslides. This study analyses volume change of co-seismic landslides deeply, permitting to help the correct quantification of the source volume and deposit volume of seismic landslide and a useful reference for the correct quantification of landslide volume.展开更多
The supercritical antisolvent (SAS) process has been developed in recent years for the tormation of nanoand micro-particles. It is necessary to study the liquid phase volume expansion (LPVE) and find the relations...The supercritical antisolvent (SAS) process has been developed in recent years for the tormation of nanoand micro-particles. It is necessary to study the liquid phase volume expansion (LPVE) and find the relationships between the operating conditions and the LPVE in order to develop a practical method for determining the operation conditions and selecting an organic solvent for SAS process. The PR equation of state with vdW-1 mixing rule is used to calculate the LPVE for CO2/toluene, CO2/acetone and CO2/ethyl acetate systems, and the results show that the LPVE for each CO2/organic solvent system decreases as the temperature increases. The relationship between the LPVE and the solubility of CO2 in the liquid phase for CO2/organic solvent systems is investigated, and the results show that the LPVE is determined directly by the solubility of CO2 in the liquid phase, xCO2, and can be related to xCO2 independently. No matter what system of CO2/organic solvent is and how different the temperature is, the LPVEs have little difference as long as the solubility of CO2 in the liquid phase, xCO2, keeps constant. The lower temperature is always favorable to the SAS process. The higher the solubility of CO2 in an organic solvent under certain operation condition, the more suitable it is to the SAS process.展开更多
The microstructures of carbon precursors significantly affect the electrochemical performance of Si/C composite anodes.However,the interaction between Si and carbon materials with different structures is still unclear...The microstructures of carbon precursors significantly affect the electrochemical performance of Si/C composite anodes.However,the interaction between Si and carbon materials with different structures is still unclear.Pitch-based materials undergoing different thermal treatments are superior sources for synthesizing carbons with different structures.Herein,different types of mesophase pitch(domain,flow-domain and mosaic structure) obtained from controllable thermal condensation are utilized to prepare Si/C composite materials and the corresponding models are established through finite element simulation to explore the correlation between the lithium storage properties of Si/C composites and the structures of carbon materials.The results indicate that the flow-domain texture pitch P2 has a better ability to buffer the volume expansion of silicon particles for its highly ordered arrangement of carbon crystallites inside could disperse the swelling stress uniformly alongside the particle surface.The sample Si@P2 exhibits the highest capacity of 1328 mA h/g after 200 cycles at a current density of 0.1 A/g as well as the best rate performance and stability.While sample Si@P3 in which the mosaic texture pitch P3 composed of random orientation of crystallites undergoes the fastest capacity decay.These findings suggest that highly ordered carbon materials are more suitable for the synthesis of Si/C composite anodes and provide insights for understanding the interaction between carbon and silicon during the charging/discharging process.展开更多
The expansion of a thick-walled hollow cylinder in soil is of non-self-similar nature that the stress/deformation paths are not the same for different soil material points.As a result,this problem cannot be solved by ...The expansion of a thick-walled hollow cylinder in soil is of non-self-similar nature that the stress/deformation paths are not the same for different soil material points.As a result,this problem cannot be solved by the common self-similar-based similarity techniques.This paper proposes a novel,exact solution for rigorous drained expansion analysis of a hollow cylinder of critical state soils.Considering stress-dependent elastic moduli of soils,new analytical stress and displacement solutions for the nonself-similar problem are developed taking the small strain assumption in the elastic zone.In the plastic zone,the cavity expansion response is formulated into a set of first-order partial differential equations(PDEs)with the combination use of Eulerian and Lagrangian descriptions,and a novel solution algorithm is developed to efficiently solve this complex boundary value problem.The solution is presented in a general form and thus can be useful for a wide range of soils.With the new solution,the non-self-similar nature induced by the finite outer boundary is clearly demonstrated and highlighted,which is found to be greatly different to the behaviour of cavity expansion in infinite soil mass.The present solution may serve as a benchmark for verifying the performance of advanced numerical techniques with critical state soil models and be used to capture the finite boundary effect for pressuremeter tests in small-sized calibration chambers.展开更多
Many mechanical,thermal and transport behaviors of polymers and metallic glasses are interpreted by the free-volume model,whereas their applications on thermal expansion behaviors of glasses is rarely seen.Metallic gl...Many mechanical,thermal and transport behaviors of polymers and metallic glasses are interpreted by the free-volume model,whereas their applications on thermal expansion behaviors of glasses is rarely seen.Metallic glass has a range of glassy states depending on cooling rate,making their coefficients of thermal expansion vary with the glassy states.Anharmonicity in the interatomic potential is often used to explain different coefficients of thermal expansion in crystalline metals or in different metallic-glass compositions.However,it is unclear how to quantify the change of anharmonicity in the various states of metallic glass of the same composition and to connect it with coefficient of thermal expansion.In the present work,isothermal annealing is applied,and the dimensional changes are measured for La_(62)Al_(14)Cu_(11.7)Ag_(2.3)Ni_(5)Co_(5) and Zr_(52.5)Cu_(17.9)Ni_(14.6)Al_(10)Ti_(5) metallic glasses,from which changes in density and the coefficients of thermal expansion of the specimens are both recorded.The coefficients of thermal expansion linearly decrease with densification reflecting the role of free volume in thermal expansion.Free volume is found to have not only volume but also entity with an effective coefficient of thermal expansion similar to that of gases.Therefore,the local regions containing free volume inside the metallic glass are gas-like instead of liquid-like in terms of thermal expansion behaviors.展开更多
Ab initio molecular dynamics calculations have been carried out to search for the ground state structure of Fe_(n)Ti_(13-n)clusters and measure the thermal expansion of Fe_(n)Ti_(13-n).The volume of Fe_(n)Ti_(13-n)clu...Ab initio molecular dynamics calculations have been carried out to search for the ground state structure of Fe_(n)Ti_(13-n)clusters and measure the thermal expansion of Fe_(n)Ti_(13-n).The volume of Fe_(n)Ti_(13-n)clusters during thermal expansion is jointly determined by anharmonic interaction and magneto-volume effect.It has been found that Fe_(6)Ti_(7),Fe_9Ti_(4),Fe_(11)Ti_(2),and Fe_(13)clusters can exhibit the remarkable magneto-volume effect with abnormal volume behaviors and magnetic moment behaviors during thermal expansion.A prerequisite for the magneto-volume effect of Fe_(n)Ti_(13-n)clusters during thermal expansion has been revealed and the magnitude of the magneto-volume is also approximately determined.Furthermore,the magneto-volume behaviors of Fe_(n)Ti_(13-n)clusters are qualitatively characterized by the energy contour map.Our results shed light on the mechanism of the magneto-volume effect in Fe_(n)Ti_(13-n)clusters during thermal expansion,which can guide the design of nanomaterials with zero expansion or even controllable expansion properties.展开更多
Thiazolidinediones (TZDs), pharmacological activa-tors of peroxisome-proliferator-activated receptors γ (PPARγ), significantly improve insulin resistance and lower plasma glucose concentrations. However, the us...Thiazolidinediones (TZDs), pharmacological activa-tors of peroxisome-proliferator-activated receptors γ (PPARγ), significantly improve insulin resistance and lower plasma glucose concentrations. However, the use of TZDs is associated with plasma volume expansion, the mechanism of which has been a matter of contro-versy. Originally, PPARγ-mediated enhanced transcrip-tion of the epithelial Na channel (ENaC) γ subunit was thought to play a central role in TZD-induced volume expansion. However, later studies suggested that the activation of ENaC alone could not explain TZD-induced volume expansion. We have recently shown that TZDs rapidly stimulate sodium-coupled bicarbonate absorp-tion from renal proximal tubule (PT) in vitro and in vivo. TZD-induced transport stimulation was dependent on PPARγ/Src/EGFR/ERK, and observed in rat, rabbit and human. However, this stimulation was not observed in mouse PTs where Src/EGFR is constitutively activated. Analysis in mouse embryonic fbroblast cells confrmed the existence of PPARγ/Src-dependent non-genomic signaling, which requires the ligand binding ability but not the transcriptional activity of PPARγ. The TZD-in-duced enhancement of association between PPARγ and Src supports an obligatory role for Src in this signal-ing. These results support the view that TZD-induced volume expansion is multifactorial. In addition to the PPARγ-dependent enhanced expression of the sodium transport system(s) in distal nephrons, the PPARγ-dependent non-genomic stimulation of renal proximal transport may be also involved in TZD-induced volume expansion.展开更多
In recent years, lakes on the Qinghai-Tibet Plateau have become more responsive to climate change. In September 2011, Zonag Lake in Hoh Xil experienced sudden drainage, the water eventually flowed into Yanhu Lake, whi...In recent years, lakes on the Qinghai-Tibet Plateau have become more responsive to climate change. In September 2011, Zonag Lake in Hoh Xil experienced sudden drainage, the water eventually flowed into Yanhu Lake, which caused Yanhu Lake to continue to expand. The potential collapse of Yanhu Lake could directly threaten the operational safety of the adjacent Qinghai-Tibet Highway, Qinghai-Tibet Railway. To explore the implications of expanding lakes on the surrounding permafrost, we selected Hoh Xil Yanhu Lake on the Qinghai-Tibet Plateau to study the effect of lake expansion on permafrost degradation. The permafrost degradation in the Yanhu Lake basin from October 2017 to December 2022 was inverted using Sentinel-1 satellite image data and small baseline subset interferometry synthetic aperture radar(SBAS-In SAR) technology. Additionally, permafrost degradation from February 2007 and February 2010 was analyzed using advanced land observing satellite phased array-type L-band synthetic aperture radar(ALOS PALSAR) satellite images and differential interferometric synthetic aperture radar(D-In SAR) technique. The results showed that the permafrost around Yanhu Lake experienced accelerated degradation. Prior to the expansion of Yanhu Lake, the average annual deformation rate along the line of sight(LOS) direction was 6.7 mm/yr. After the expansion, the rate increased to 20.9 mm/yr. The integration of spatial-temporal distribution maps of surface subsidence, Wudaoliang borehole geothermal data, meteorological data, Yanhu Lake surface area changes, and water level changes supports the assertion that the intensified permafrost degradation could be attributed to lake expansion rather than the rising air temperature. Furthermore, permafrost degradation around Yanhu Lake could impact vital infrastructure such as the adjacent Qinghai-Tibet Highway and Qinghai-Tibet Railway.展开更多
The Mutis-Timau Forest Complex,located on Timor Island,Indonesia,is a mountainous tropical forest area that gradually decreases due to deforestation and forest degradation.Previous modelling studies based on patterns ...The Mutis-Timau Forest Complex,located on Timor Island,Indonesia,is a mountainous tropical forest area that gradually decreases due to deforestation and forest degradation.Previous modelling studies based on patterns indicate that deforestation primarily occurs at lower elevations and near the boundaries of forests and settlements,often associated with shifting cultivation by local farmers.This study adopts a process-based modelling approach,specifically the agent-based model,to simulate land changes,particularly farmers'expansion of agricultural land around the Mutis mountain forest.The underlying concept of this agent-based approach is the interaction between the human and environmental systems.Farmers,representing the human system,interact with the land,which represents the environmental system,through land use decision-making mechanisms.The research was conducted in the Community Forest of the Timor Tengah Utara District,one of the sites within the Mutis-Timau Forest Complex with the highest deforestation rate.Land use change simulations were performed using agent-based modelling from 1999 to 2030,considering the socio-economic conditions of farmers,spatial preferences,land use decisions,and natural transitions.The results revealed that the agricultural area increased by 14%under the Business as Usual scenario and 5%under the Reducing Emission from Deforestation and Forest Degradation scenario,compared to the initial agricultural area of 245 hectares.The probability of farmers deciding to extend agricultural activities was positively associated with the number of livestock maintained by farmers and the size of the village area.Conversely,the likelihood of farmers opting for agricultural extensification decreased with an increase in the area of private land and the farmer's age.These findings are crucial for the managers of the Mutis-Timau Forest Complex and other relevant stakeholders,as they aid in arranging actions to combat deforestation,designing proper forest-related policies,and providing support for initiatives such as reducing emissions from deforestation and forest degradation programs or further incentive schemes.展开更多
Numerous engineering cases have demonstrated that the expansive soil channel slope remains susceptible to damage with the implementation of a rigid or closed protective structure. It is common for the protective struc...Numerous engineering cases have demonstrated that the expansive soil channel slope remains susceptible to damage with the implementation of a rigid or closed protective structure. It is common for the protective structure to experience bulging failure due to excessive swelling pressure. To investigate the swelling pressure properties of expansive soil, the constant volume test was employed to study the influence of water content and reserved expansion deformation on the characteristics of swelling pressure in strong expansive soils, and also to explore the evolution mechanism of the swelling pressure. The findings demonstrate that the swelling pressure-time curve can be classified into swelling pressure-time softening and swelling pressure-time stability type. The swelling pressuretime curve of the specimen with low water content is the swelling pressure-time softening type, and the softening level will be weakened with increasing reserved expansion deformation. Besides, the maximum swelling pressure Psmax decreases with increasing water content and reserved expansion deformation, especially for expansion ratio η from 24% to 37%. The reserved deformation has little effect on reducing Psmax when it is beyond 7% of the expansion rate. The specimen with low water content has a more homogeneous structure due to the significant expansion-filling effect, and the fracture and reorganization of the aggregates in the specimens with low water content cause the swelling pressure-time softening behavior. In addition, the proposed swelling pressure-time curve prediction model has a good prediction on the test results. If necessary, a deformation space of about 7% expansion rate is recommended to be reserved in the engineering to reduce the swelling pressure except for keeping a stable water content.展开更多
In the context of global mean square error concerning the number of random variables in the representation,the Karhunen–Loève(KL)expansion is the optimal series expansion method for random field discretization.T...In the context of global mean square error concerning the number of random variables in the representation,the Karhunen–Loève(KL)expansion is the optimal series expansion method for random field discretization.The computational efficiency and accuracy of the KL expansion are contingent upon the accurate resolution of the Fredholm integral eigenvalue problem(IEVP).The paper proposes an interpolation method based on different interpolation basis functions such as moving least squares(MLS),least squares(LS),and finite element method(FEM)to solve the IEVP.Compared with the Galerkin method based on finite element or Legendre polynomials,the main advantage of the interpolation method is that,in the calculation of eigenvalues and eigenfunctions in one-dimensional random fields,the integral matrix containing covariance function only requires a single integral,which is less than a two-folded integral by the Galerkin method.The effectiveness and computational efficiency of the proposed interpolation method are verified through various one-dimensional examples.Furthermore,based on theKL expansion and polynomial chaos expansion,the stochastic analysis of two-dimensional regular and irregular domains is conducted,and the basis function of the extended finite element method(XFEM)is introduced as the interpolation basis function in two-dimensional irregular domains to solve the IEVP.展开更多
China has made great achievements in industrial development and is transforming into a powerful manufacturing country.Meanwhile,the industrial land scale is also expanding.However,whether industrial structure upgradin...China has made great achievements in industrial development and is transforming into a powerful manufacturing country.Meanwhile,the industrial land scale is also expanding.However,whether industrial structure upgrading achieves the purpose of restraining industrial land expansion remains unanswered.By calculating the industrial land structure index(ILSI)and industrial land expansion scale(ILES),this study analyzed their temporal and spatial distribution characteristics at both regional and city levels from 2007to 2020 in China.Results show that industrial land expansion presents a different trend in the four regions,the ILES in the eastern region is the largest,and the speed of industrial land expansion has declined since 2013,but it has gradually increased since 2016.The ILSI of the eastern and central regions is higher than that of the western and northeastern regions.Furthermore,a spatial Durbin model(SDM)has been established to estimate the spatial effect of industrial structure upgrading on industrial land expansion from 2007 to2020.Notably,industrial structure upgrading has not slowed industrial land expansion.The eastern and western regions require a greater amount of industrial land while upgrading the industrial structure.The improvement of the infrastructure level and international trade level has promoted industrial land expansion.展开更多
The expansion chamber serves as the primary silencing structure within the exhaust pipeline.However,it can also act as a sound-emitting structure when subjected to airflow.This article presents a hybrid method for num...The expansion chamber serves as the primary silencing structure within the exhaust pipeline.However,it can also act as a sound-emitting structure when subjected to airflow.This article presents a hybrid method for numerically simulating and analyzing the unsteady flow and aerodynamic noise in an expansion chamber under the influence of airflow.A fluid simulation model is established,utilizing the Large Eddy Simulation(LES)method to calculate the unsteady flow within the expansion chamber.The simulation results effectively capture the development and changes of the unsteady flow and vorticity inside the cavity,exhibiting a high level of consistency with experimental observations.To calculate the aerodynamic noise sources within the cavity,the flow field results are integrated using the method of integral interpolation and inserted into the acoustic grid.The acoustic analogy method is then employed to determine the aerodynamic noise sources.An acoustic simulation model is established,and the flow noise source is imported into the sound field grid to calculate the sound pressure at the far-field response point.The calculated sound pressure levels and resonance frequencies show good agreement with the experimental results.To address the issue of airflow regeneration noise within the cavity,perforated tubes are selected as a means of noise suppression.An experimental platformfor airflow regeneration noise is constructed,and experimental samples are processed to analyze and verify the noise suppression effect of perforated tube expansion cavities under different airflow velocities.The research findings indicate that the perforated tube expansion cavity can effectively suppress low-frequency aerodynamic noise within the cavity by impeding the formation of strong shear layers.Moreover,the semi-perforated tube expansion cavity demonstrates the most effective suppression of aerodynamic noise.展开更多
With the increasing penetration of wind and solar energies,the accompanying uncertainty that propagates in the system places higher requirements on the expansion planning of power systems.A source-grid-load-storage co...With the increasing penetration of wind and solar energies,the accompanying uncertainty that propagates in the system places higher requirements on the expansion planning of power systems.A source-grid-load-storage coordinated expansion planning model based on stochastic programming was proposed to suppress the impact of wind and solar energy fluctuations.Multiple types of system components,including demand response service entities,converter stations,DC transmission systems,cascade hydropower stations,and other traditional components,have been extensively modeled.Moreover,energy storage systems are considered to improve the accommodation level of renewable energy and alleviate the influence of intermittence.Demand-response service entities from the load side are used to reduce and move the demand during peak load periods.The uncertainties in wind,solar energy,and loads were simulated using stochastic programming.Finally,the effectiveness of the proposed model is verified through numerical simulations.展开更多
A novel negative thermal expansion(NTE) material NdMnO_(3) was synthesized by solid-state method at 1 523 K. The crystal structure, phase transition, pores effect and negative expansion properties of NdMnO_(3) were in...A novel negative thermal expansion(NTE) material NdMnO_(3) was synthesized by solid-state method at 1 523 K. The crystal structure, phase transition, pores effect and negative expansion properties of NdMnO_(3) were investigated by variable temperature X-ray diffraction(XRD), scanning electron microscope(SEM) and variable temperature Raman spectra. The compound exhibits NTE properties in the orderly O' phase crystal structure. When the temperature is from 293 to 759 K, the ceramic NdMnO_(3) shows negative thermal expansion of-4.7×10^(-6)/K. As temperature increases, the ceramic NdMnO_(3) presents NTE property range from 759 to 1 007 K. The average linear expansion coefficient is-18.88×10^(-6)/K. The physical mechanism of NTE is discussed and clarified through experiments.展开更多
To address the seismic face stability challenges encountered in urban and subsea tunnel construction,an efficient probabilistic analysis framework for shield tunnel faces under seismic conditions is proposed.Based on ...To address the seismic face stability challenges encountered in urban and subsea tunnel construction,an efficient probabilistic analysis framework for shield tunnel faces under seismic conditions is proposed.Based on the upper-bound theory of limit analysis,an improved three-dimensional discrete deterministic mechanism,accounting for the heterogeneous nature of soil media,is formulated to evaluate seismic face stability.The metamodel of failure probabilistic assessments for seismic tunnel faces is constructed by integrating the sparse polynomial chaos expansion method(SPCE)with the modified pseudo-dynamic approach(MPD).The improved deterministic model is validated by comparing with published literature and numerical simulations results,and the SPCE-MPD metamodel is examined with the traditional MCS method.Based on the SPCE-MPD metamodels,the seismic effects on face failure probability and reliability index are presented and the global sensitivity analysis(GSA)is involved to reflect the influence order of seismic action parameters.Finally,the proposed approach is tested to be effective by a engineering case of the Chengdu outer ring tunnel.The results show that higher uncertainty of seismic response on face stability should be noticed in areas with intense earthquakes and variation of seismic wave velocity has the most profound influence on tunnel face stability.展开更多
Historically,streamer-to-leader transition studies mainly focused on the rod-plane gap and low altitude analysis,with limited attention paid to the sphere-plane gap at high altitude analysis.In this work,sphere-plane ...Historically,streamer-to-leader transition studies mainly focused on the rod-plane gap and low altitude analysis,with limited attention paid to the sphere-plane gap at high altitude analysis.In this work,sphere-plane gap discharge tests were carried out under the gap distance of 5 m at the Qinghai Ultra High Voltage(UHV)test base at an altitude of 2200 m.The experiments measured the physical parameters such as the discharge current,electric field intensity and instantaneous optical power.The duration of the dark period and the critical charge of streamer-toleader transition were obtained at high altitude.Based on radial thermal expansion of the streamer stem,we established a modified streamer-to-leader transition model of the sphere-plane gap discharge at high altitude,and calculated the stem temperature,stem radii and the duration of streamer-to-leader transition.Compared with the measured duration of sphere-plane electrode discharge at an altitude of 2200 m,the error rate of the modified model was 0.94%,while the classical model was 6.97%,demonstrating the effectiveness of the modified model.From the comparisons and analysis,several suggestions are proposed to improve the numerical model for further quantitative investigations of the leader inception.展开更多
Background:With the expansion of urban areas,the remnants of forested areas play a crucial role in preserving biodiversity in urban environments.This study aimed to explore the impact of spatiotemporal urban expansion...Background:With the expansion of urban areas,the remnants of forested areas play a crucial role in preserving biodiversity in urban environments.This study aimed to explore the impact of spatiotemporal urban expansion on the networks of leaf traits in woody plants within remnant forest patches,thereby enhancing our understanding of plant adaptive strategies and contributing to the conservation of urban biodiversity.Methods:Our study examined woody plants within 120 sample plots across 15 remnant forest patches in Guiyang,China.We constructed leaf trait networks (LTNs) based on 26 anatomical,structural,and compositional leaf traits and assessed the effects of the spatiotemporal dynamics of urban expansion on these LTNs.Results and conclusions:Our results indicate that shrubs within these patches have greater average path lengths and diameters than trees.With increasing urban expansion intensity,we observed a rise in the edge density of the LTN-shrubs.Additionally,modularity within the networks of shrubs decreased as road density and urban expansion intensity increased,and increases in the average path length and average clustering coefficient for shrubs were observed with a rise in the composite terrain complexity index.Notably,patches subjected to‘leapfrog’expansion exhibited greater average patch length and diameter than those experiencing edge growth.Stomatal traits were found to have high degree centrality within these networks,signifying their substantial contribution to multiple functions.In urban remnant forests,shrubs bolster their resilience to variable environmental pressures by augmenting the complexity of their leaf trait networks.展开更多
基金Department of Education of Gansu Province: Industrial Support Plan Project (2022CYZC-23)National Natural Science Foundation of China (22269012)Gansu Key Research and Development Program (23YFGA0053)。
文摘Silicon is considered to be one of the most promising anode materials for lithium-ion batteries(LIBs),but its application is limited by the large volume expansion during alloying and dealloying.The constructing of a high-performance solid electrolyte interface(SEI) film on the surface of the anode material is considered to be one of the effective strategies to mitigate volume expansion of silicon-based anode.In this study,an intermittent discharge strategy which helps to improve the utilization efficiency of electrolyte additive of lithium difluorobisoxalate phosphate(LiDFBOP) is proposed to construct a highly conductive and dense SEI film.The results of electrochemical and physical characterization and theoretical calculations show that the intermittent discharge in the voltage range from open circuit voltage(OCV) to 1.8 V facilitates the diffusion of the soluble products,creates the conditions for the repeated direct contact between Si@C anode and LiDFBOP additive,increases the decomposition of LiDFBOP additive,and thus produces a uniform,dense and inorganics-rich(Li_(2)C_(2)O_(4),LiF and Li_(x)PO_yF_z) SEI film.Subsequently,this SEI film helps to ensure the even intercalation/de-intercalation of Li^(+) in the SEI film and the homogeneous diffusion of Li^(+) inside the Si particles,decreasing the internal stresses and anisotropic phase transitions,maintaining the integrity of Si particles,inhibiting the volume expansion and thu s improving the electrochemical performance of cells.This study not only improves the utilization efficiency of expensive additives through a simply and low-cost method,but also enriches the strategy to improve the electrochemical performance of Si@C anode through interfacial engineering.
基金supported by an international cooperation project(41661144037)of National Natural Science Foundation of China(NSFC)and International Center for Integrated Mountain Development(ICIMOD)
文摘When a big landside occurs, source material can change into loose deposit during its runout, causing the increase of the total landslide volume to some extent. Such changes can influence the quantification of seismic landslides. The objective of this paper was to study the volume expansion rate of landslides based on the data of 1417 co-seismic landslides triggered by the 2008 Wenchuan, China Mw 7.9 earthquake. We also analyzed the correlations between this rate and landslide geometric parameters(volume, height(H), length-width ratio(L/W), length-height ratio(L/H)), and environmental factors(peak ground acceleration(PGA), lithology, slope angle and aspect). The results show that the total source volume of the 1417 landslides is 1248 million m3, while the total volume of the deposit is 1501 million m3, which means the total volume expanding rate(Et) is 20.3% with the average volume expansion rate(Ea) 22.6%. The analysis indicates that volume expansion rate generally decreases with the increasing volume and height of landslides, while becoming larger with increasing L/H and L/W. Besides, the volume expansion rate is closely related to the landslide type and the volume scale of landslides. This study analyses volume change of co-seismic landslides deeply, permitting to help the correct quantification of the source volume and deposit volume of seismic landslide and a useful reference for the correct quantification of landslide volume.
基金Supported by the National Nature Science Foundation of China (No. 20176003)
文摘The supercritical antisolvent (SAS) process has been developed in recent years for the tormation of nanoand micro-particles. It is necessary to study the liquid phase volume expansion (LPVE) and find the relationships between the operating conditions and the LPVE in order to develop a practical method for determining the operation conditions and selecting an organic solvent for SAS process. The PR equation of state with vdW-1 mixing rule is used to calculate the LPVE for CO2/toluene, CO2/acetone and CO2/ethyl acetate systems, and the results show that the LPVE for each CO2/organic solvent system decreases as the temperature increases. The relationship between the LPVE and the solubility of CO2 in the liquid phase for CO2/organic solvent systems is investigated, and the results show that the LPVE is determined directly by the solubility of CO2 in the liquid phase, xCO2, and can be related to xCO2 independently. No matter what system of CO2/organic solvent is and how different the temperature is, the LPVEs have little difference as long as the solubility of CO2 in the liquid phase, xCO2, keeps constant. The lower temperature is always favorable to the SAS process. The higher the solubility of CO2 in an organic solvent under certain operation condition, the more suitable it is to the SAS process.
基金financial support from the National Key Research and Development Programme (2018YFC1801901)the National Natural Science Foundation of China (21808115, 22108309, 52172093)+1 种基金the Key Research and Development Project (Major Project of Scientific and Technological Innovation) of Shandong Province (2020CXGC010308)the Taishan Scholar Program of Shandong (ts20190919)。
文摘The microstructures of carbon precursors significantly affect the electrochemical performance of Si/C composite anodes.However,the interaction between Si and carbon materials with different structures is still unclear.Pitch-based materials undergoing different thermal treatments are superior sources for synthesizing carbons with different structures.Herein,different types of mesophase pitch(domain,flow-domain and mosaic structure) obtained from controllable thermal condensation are utilized to prepare Si/C composite materials and the corresponding models are established through finite element simulation to explore the correlation between the lithium storage properties of Si/C composites and the structures of carbon materials.The results indicate that the flow-domain texture pitch P2 has a better ability to buffer the volume expansion of silicon particles for its highly ordered arrangement of carbon crystallites inside could disperse the swelling stress uniformly alongside the particle surface.The sample Si@P2 exhibits the highest capacity of 1328 mA h/g after 200 cycles at a current density of 0.1 A/g as well as the best rate performance and stability.While sample Si@P3 in which the mosaic texture pitch P3 composed of random orientation of crystallites undergoes the fastest capacity decay.These findings suggest that highly ordered carbon materials are more suitable for the synthesis of Si/C composite anodes and provide insights for understanding the interaction between carbon and silicon during the charging/discharging process.
基金funding support from the National Key Research and Development Program of China(Grant No.2023YFB2604004)the National Natural Science Foundation of China(Grant No.52108374)the“Taishan”Scholar Program of Shandong Province,China(Grant No.tsqn201909016)。
文摘The expansion of a thick-walled hollow cylinder in soil is of non-self-similar nature that the stress/deformation paths are not the same for different soil material points.As a result,this problem cannot be solved by the common self-similar-based similarity techniques.This paper proposes a novel,exact solution for rigorous drained expansion analysis of a hollow cylinder of critical state soils.Considering stress-dependent elastic moduli of soils,new analytical stress and displacement solutions for the nonself-similar problem are developed taking the small strain assumption in the elastic zone.In the plastic zone,the cavity expansion response is formulated into a set of first-order partial differential equations(PDEs)with the combination use of Eulerian and Lagrangian descriptions,and a novel solution algorithm is developed to efficiently solve this complex boundary value problem.The solution is presented in a general form and thus can be useful for a wide range of soils.With the new solution,the non-self-similar nature induced by the finite outer boundary is clearly demonstrated and highlighted,which is found to be greatly different to the behaviour of cavity expansion in infinite soil mass.The present solution may serve as a benchmark for verifying the performance of advanced numerical techniques with critical state soil models and be used to capture the finite boundary effect for pressuremeter tests in small-sized calibration chambers.
基金supported by the National Natural Science Foundation of China(Grant Nos.51671211,51601215,and 51971239)the National Key Research and Development Program of China(Grant No.2021YFA0703603)+1 种基金he Strategic Priority Research Program of the Chinese Academy of Sciences(Grant No.XDB30000000)the Natural Science Foundation of Guangdong Province(Grant No.2019B030302010)。
文摘Many mechanical,thermal and transport behaviors of polymers and metallic glasses are interpreted by the free-volume model,whereas their applications on thermal expansion behaviors of glasses is rarely seen.Metallic glass has a range of glassy states depending on cooling rate,making their coefficients of thermal expansion vary with the glassy states.Anharmonicity in the interatomic potential is often used to explain different coefficients of thermal expansion in crystalline metals or in different metallic-glass compositions.However,it is unclear how to quantify the change of anharmonicity in the various states of metallic glass of the same composition and to connect it with coefficient of thermal expansion.In the present work,isothermal annealing is applied,and the dimensional changes are measured for La_(62)Al_(14)Cu_(11.7)Ag_(2.3)Ni_(5)Co_(5) and Zr_(52.5)Cu_(17.9)Ni_(14.6)Al_(10)Ti_(5) metallic glasses,from which changes in density and the coefficients of thermal expansion of the specimens are both recorded.The coefficients of thermal expansion linearly decrease with densification reflecting the role of free volume in thermal expansion.Free volume is found to have not only volume but also entity with an effective coefficient of thermal expansion similar to that of gases.Therefore,the local regions containing free volume inside the metallic glass are gas-like instead of liquid-like in terms of thermal expansion behaviors.
基金the support from the National Natural Science Foundation of China(Grant No.52171038)key R&D projects in Shandong Province(Grant No.2021SFGC1001)+1 种基金supported by the Special Funding in the Project of the Taishan Scholar Construction Engineering and the program of Jinan Science and Technology Bureau(Grant No.2020GXRC019)new material demonstration platform construction project from Ministry of Industry and Information Technology of China(Grant No.2020-370104-34-03-043952-01-11)。
文摘Ab initio molecular dynamics calculations have been carried out to search for the ground state structure of Fe_(n)Ti_(13-n)clusters and measure the thermal expansion of Fe_(n)Ti_(13-n).The volume of Fe_(n)Ti_(13-n)clusters during thermal expansion is jointly determined by anharmonic interaction and magneto-volume effect.It has been found that Fe_(6)Ti_(7),Fe_9Ti_(4),Fe_(11)Ti_(2),and Fe_(13)clusters can exhibit the remarkable magneto-volume effect with abnormal volume behaviors and magnetic moment behaviors during thermal expansion.A prerequisite for the magneto-volume effect of Fe_(n)Ti_(13-n)clusters during thermal expansion has been revealed and the magnitude of the magneto-volume is also approximately determined.Furthermore,the magneto-volume behaviors of Fe_(n)Ti_(13-n)clusters are qualitatively characterized by the energy contour map.Our results shed light on the mechanism of the magneto-volume effect in Fe_(n)Ti_(13-n)clusters during thermal expansion,which can guide the design of nanomaterials with zero expansion or even controllable expansion properties.
文摘Thiazolidinediones (TZDs), pharmacological activa-tors of peroxisome-proliferator-activated receptors γ (PPARγ), significantly improve insulin resistance and lower plasma glucose concentrations. However, the use of TZDs is associated with plasma volume expansion, the mechanism of which has been a matter of contro-versy. Originally, PPARγ-mediated enhanced transcrip-tion of the epithelial Na channel (ENaC) γ subunit was thought to play a central role in TZD-induced volume expansion. However, later studies suggested that the activation of ENaC alone could not explain TZD-induced volume expansion. We have recently shown that TZDs rapidly stimulate sodium-coupled bicarbonate absorp-tion from renal proximal tubule (PT) in vitro and in vivo. TZD-induced transport stimulation was dependent on PPARγ/Src/EGFR/ERK, and observed in rat, rabbit and human. However, this stimulation was not observed in mouse PTs where Src/EGFR is constitutively activated. Analysis in mouse embryonic fbroblast cells confrmed the existence of PPARγ/Src-dependent non-genomic signaling, which requires the ligand binding ability but not the transcriptional activity of PPARγ. The TZD-in-duced enhancement of association between PPARγ and Src supports an obligatory role for Src in this signal-ing. These results support the view that TZD-induced volume expansion is multifactorial. In addition to the PPARγ-dependent enhanced expression of the sodium transport system(s) in distal nephrons, the PPARγ-dependent non-genomic stimulation of renal proximal transport may be also involved in TZD-induced volume expansion.
基金supported by the Natural Science Foundation of Qinghai Province, China (No.2021-ZJ940Q)。
文摘In recent years, lakes on the Qinghai-Tibet Plateau have become more responsive to climate change. In September 2011, Zonag Lake in Hoh Xil experienced sudden drainage, the water eventually flowed into Yanhu Lake, which caused Yanhu Lake to continue to expand. The potential collapse of Yanhu Lake could directly threaten the operational safety of the adjacent Qinghai-Tibet Highway, Qinghai-Tibet Railway. To explore the implications of expanding lakes on the surrounding permafrost, we selected Hoh Xil Yanhu Lake on the Qinghai-Tibet Plateau to study the effect of lake expansion on permafrost degradation. The permafrost degradation in the Yanhu Lake basin from October 2017 to December 2022 was inverted using Sentinel-1 satellite image data and small baseline subset interferometry synthetic aperture radar(SBAS-In SAR) technology. Additionally, permafrost degradation from February 2007 and February 2010 was analyzed using advanced land observing satellite phased array-type L-band synthetic aperture radar(ALOS PALSAR) satellite images and differential interferometric synthetic aperture radar(D-In SAR) technique. The results showed that the permafrost around Yanhu Lake experienced accelerated degradation. Prior to the expansion of Yanhu Lake, the average annual deformation rate along the line of sight(LOS) direction was 6.7 mm/yr. After the expansion, the rate increased to 20.9 mm/yr. The integration of spatial-temporal distribution maps of surface subsidence, Wudaoliang borehole geothermal data, meteorological data, Yanhu Lake surface area changes, and water level changes supports the assertion that the intensified permafrost degradation could be attributed to lake expansion rather than the rising air temperature. Furthermore, permafrost degradation around Yanhu Lake could impact vital infrastructure such as the adjacent Qinghai-Tibet Highway and Qinghai-Tibet Railway.
基金funded by the Ministry of Environment and Forestry of the Republic of Indonesia through the research funding assistance program。
文摘The Mutis-Timau Forest Complex,located on Timor Island,Indonesia,is a mountainous tropical forest area that gradually decreases due to deforestation and forest degradation.Previous modelling studies based on patterns indicate that deforestation primarily occurs at lower elevations and near the boundaries of forests and settlements,often associated with shifting cultivation by local farmers.This study adopts a process-based modelling approach,specifically the agent-based model,to simulate land changes,particularly farmers'expansion of agricultural land around the Mutis mountain forest.The underlying concept of this agent-based approach is the interaction between the human and environmental systems.Farmers,representing the human system,interact with the land,which represents the environmental system,through land use decision-making mechanisms.The research was conducted in the Community Forest of the Timor Tengah Utara District,one of the sites within the Mutis-Timau Forest Complex with the highest deforestation rate.Land use change simulations were performed using agent-based modelling from 1999 to 2030,considering the socio-economic conditions of farmers,spatial preferences,land use decisions,and natural transitions.The results revealed that the agricultural area increased by 14%under the Business as Usual scenario and 5%under the Reducing Emission from Deforestation and Forest Degradation scenario,compared to the initial agricultural area of 245 hectares.The probability of farmers deciding to extend agricultural activities was positively associated with the number of livestock maintained by farmers and the size of the village area.Conversely,the likelihood of farmers opting for agricultural extensification decreased with an increase in the area of private land and the farmer's age.These findings are crucial for the managers of the Mutis-Timau Forest Complex and other relevant stakeholders,as they aid in arranging actions to combat deforestation,designing proper forest-related policies,and providing support for initiatives such as reducing emissions from deforestation and forest degradation programs or further incentive schemes.
基金financially supported by the National Key R&D Program of China (Grant No. 2019YFC1509901)。
文摘Numerous engineering cases have demonstrated that the expansive soil channel slope remains susceptible to damage with the implementation of a rigid or closed protective structure. It is common for the protective structure to experience bulging failure due to excessive swelling pressure. To investigate the swelling pressure properties of expansive soil, the constant volume test was employed to study the influence of water content and reserved expansion deformation on the characteristics of swelling pressure in strong expansive soils, and also to explore the evolution mechanism of the swelling pressure. The findings demonstrate that the swelling pressure-time curve can be classified into swelling pressure-time softening and swelling pressure-time stability type. The swelling pressuretime curve of the specimen with low water content is the swelling pressure-time softening type, and the softening level will be weakened with increasing reserved expansion deformation. Besides, the maximum swelling pressure Psmax decreases with increasing water content and reserved expansion deformation, especially for expansion ratio η from 24% to 37%. The reserved deformation has little effect on reducing Psmax when it is beyond 7% of the expansion rate. The specimen with low water content has a more homogeneous structure due to the significant expansion-filling effect, and the fracture and reorganization of the aggregates in the specimens with low water content cause the swelling pressure-time softening behavior. In addition, the proposed swelling pressure-time curve prediction model has a good prediction on the test results. If necessary, a deformation space of about 7% expansion rate is recommended to be reserved in the engineering to reduce the swelling pressure except for keeping a stable water content.
基金The authors gratefully acknowledge the support provided by the Postgraduate Research&Practice Program of Jiangsu Province(Grant No.KYCX18_0526)the Fundamental Research Funds for the Central Universities(Grant No.2018B682X14)Guangdong Basic and Applied Basic Research Foundation(No.2021A1515110807).
文摘In the context of global mean square error concerning the number of random variables in the representation,the Karhunen–Loève(KL)expansion is the optimal series expansion method for random field discretization.The computational efficiency and accuracy of the KL expansion are contingent upon the accurate resolution of the Fredholm integral eigenvalue problem(IEVP).The paper proposes an interpolation method based on different interpolation basis functions such as moving least squares(MLS),least squares(LS),and finite element method(FEM)to solve the IEVP.Compared with the Galerkin method based on finite element or Legendre polynomials,the main advantage of the interpolation method is that,in the calculation of eigenvalues and eigenfunctions in one-dimensional random fields,the integral matrix containing covariance function only requires a single integral,which is less than a two-folded integral by the Galerkin method.The effectiveness and computational efficiency of the proposed interpolation method are verified through various one-dimensional examples.Furthermore,based on theKL expansion and polynomial chaos expansion,the stochastic analysis of two-dimensional regular and irregular domains is conducted,and the basis function of the extended finite element method(XFEM)is introduced as the interpolation basis function in two-dimensional irregular domains to solve the IEVP.
基金Under the auspices of National Natural Science Foundation of China(No.72074181)National Social Science Foundation of China(No.20CJY023)Innovation Capability Support Program of Shaanxi(No.2021KJXX-12)。
文摘China has made great achievements in industrial development and is transforming into a powerful manufacturing country.Meanwhile,the industrial land scale is also expanding.However,whether industrial structure upgrading achieves the purpose of restraining industrial land expansion remains unanswered.By calculating the industrial land structure index(ILSI)and industrial land expansion scale(ILES),this study analyzed their temporal and spatial distribution characteristics at both regional and city levels from 2007to 2020 in China.Results show that industrial land expansion presents a different trend in the four regions,the ILES in the eastern region is the largest,and the speed of industrial land expansion has declined since 2013,but it has gradually increased since 2016.The ILSI of the eastern and central regions is higher than that of the western and northeastern regions.Furthermore,a spatial Durbin model(SDM)has been established to estimate the spatial effect of industrial structure upgrading on industrial land expansion from 2007 to2020.Notably,industrial structure upgrading has not slowed industrial land expansion.The eastern and western regions require a greater amount of industrial land while upgrading the industrial structure.The improvement of the infrastructure level and international trade level has promoted industrial land expansion.
基金supported by the National Natural Science Foundation of China(NSFC)(Grant Nos.12104153 and 51765017)China Postdoctoral Science Foundation(Grant No.2021M701963)Training Plan for Academic and Technical Leaders of Major Disciplines in Jiangxi Province,China(Grant No.20204BCJL23034).
文摘The expansion chamber serves as the primary silencing structure within the exhaust pipeline.However,it can also act as a sound-emitting structure when subjected to airflow.This article presents a hybrid method for numerically simulating and analyzing the unsteady flow and aerodynamic noise in an expansion chamber under the influence of airflow.A fluid simulation model is established,utilizing the Large Eddy Simulation(LES)method to calculate the unsteady flow within the expansion chamber.The simulation results effectively capture the development and changes of the unsteady flow and vorticity inside the cavity,exhibiting a high level of consistency with experimental observations.To calculate the aerodynamic noise sources within the cavity,the flow field results are integrated using the method of integral interpolation and inserted into the acoustic grid.The acoustic analogy method is then employed to determine the aerodynamic noise sources.An acoustic simulation model is established,and the flow noise source is imported into the sound field grid to calculate the sound pressure at the far-field response point.The calculated sound pressure levels and resonance frequencies show good agreement with the experimental results.To address the issue of airflow regeneration noise within the cavity,perforated tubes are selected as a means of noise suppression.An experimental platformfor airflow regeneration noise is constructed,and experimental samples are processed to analyze and verify the noise suppression effect of perforated tube expansion cavities under different airflow velocities.The research findings indicate that the perforated tube expansion cavity can effectively suppress low-frequency aerodynamic noise within the cavity by impeding the formation of strong shear layers.Moreover,the semi-perforated tube expansion cavity demonstrates the most effective suppression of aerodynamic noise.
基金supported by Science and Technology Project of SGCC(SGSW0000FZGHBJS2200070)。
文摘With the increasing penetration of wind and solar energies,the accompanying uncertainty that propagates in the system places higher requirements on the expansion planning of power systems.A source-grid-load-storage coordinated expansion planning model based on stochastic programming was proposed to suppress the impact of wind and solar energy fluctuations.Multiple types of system components,including demand response service entities,converter stations,DC transmission systems,cascade hydropower stations,and other traditional components,have been extensively modeled.Moreover,energy storage systems are considered to improve the accommodation level of renewable energy and alleviate the influence of intermittence.Demand-response service entities from the load side are used to reduce and move the demand during peak load periods.The uncertainties in wind,solar energy,and loads were simulated using stochastic programming.Finally,the effectiveness of the proposed model is verified through numerical simulations.
文摘A novel negative thermal expansion(NTE) material NdMnO_(3) was synthesized by solid-state method at 1 523 K. The crystal structure, phase transition, pores effect and negative expansion properties of NdMnO_(3) were investigated by variable temperature X-ray diffraction(XRD), scanning electron microscope(SEM) and variable temperature Raman spectra. The compound exhibits NTE properties in the orderly O' phase crystal structure. When the temperature is from 293 to 759 K, the ceramic NdMnO_(3) shows negative thermal expansion of-4.7×10^(-6)/K. As temperature increases, the ceramic NdMnO_(3) presents NTE property range from 759 to 1 007 K. The average linear expansion coefficient is-18.88×10^(-6)/K. The physical mechanism of NTE is discussed and clarified through experiments.
基金Project([2018]3010)supported by the Guizhou Provincial Science and Technology Major Project,China。
文摘To address the seismic face stability challenges encountered in urban and subsea tunnel construction,an efficient probabilistic analysis framework for shield tunnel faces under seismic conditions is proposed.Based on the upper-bound theory of limit analysis,an improved three-dimensional discrete deterministic mechanism,accounting for the heterogeneous nature of soil media,is formulated to evaluate seismic face stability.The metamodel of failure probabilistic assessments for seismic tunnel faces is constructed by integrating the sparse polynomial chaos expansion method(SPCE)with the modified pseudo-dynamic approach(MPD).The improved deterministic model is validated by comparing with published literature and numerical simulations results,and the SPCE-MPD metamodel is examined with the traditional MCS method.Based on the SPCE-MPD metamodels,the seismic effects on face failure probability and reliability index are presented and the global sensitivity analysis(GSA)is involved to reflect the influence order of seismic action parameters.Finally,the proposed approach is tested to be effective by a engineering case of the Chengdu outer ring tunnel.The results show that higher uncertainty of seismic response on face stability should be noticed in areas with intense earthquakes and variation of seismic wave velocity has the most profound influence on tunnel face stability.
基金supported by National Natural Science Foundation of China(Scientific Funds for Young Scientists)(No.52007064)。
文摘Historically,streamer-to-leader transition studies mainly focused on the rod-plane gap and low altitude analysis,with limited attention paid to the sphere-plane gap at high altitude analysis.In this work,sphere-plane gap discharge tests were carried out under the gap distance of 5 m at the Qinghai Ultra High Voltage(UHV)test base at an altitude of 2200 m.The experiments measured the physical parameters such as the discharge current,electric field intensity and instantaneous optical power.The duration of the dark period and the critical charge of streamer-toleader transition were obtained at high altitude.Based on radial thermal expansion of the streamer stem,we established a modified streamer-to-leader transition model of the sphere-plane gap discharge at high altitude,and calculated the stem temperature,stem radii and the duration of streamer-to-leader transition.Compared with the measured duration of sphere-plane electrode discharge at an altitude of 2200 m,the error rate of the modified model was 0.94%,while the classical model was 6.97%,demonstrating the effectiveness of the modified model.From the comparisons and analysis,several suggestions are proposed to improve the numerical model for further quantitative investigations of the leader inception.
基金funded by the National Natural Science Foundation of China (No.32360418)the Guizhou Provincial Basic Research Program (Natural Science)(No.QianKeHeJiChu-ZK[2024]YiBan022)。
文摘Background:With the expansion of urban areas,the remnants of forested areas play a crucial role in preserving biodiversity in urban environments.This study aimed to explore the impact of spatiotemporal urban expansion on the networks of leaf traits in woody plants within remnant forest patches,thereby enhancing our understanding of plant adaptive strategies and contributing to the conservation of urban biodiversity.Methods:Our study examined woody plants within 120 sample plots across 15 remnant forest patches in Guiyang,China.We constructed leaf trait networks (LTNs) based on 26 anatomical,structural,and compositional leaf traits and assessed the effects of the spatiotemporal dynamics of urban expansion on these LTNs.Results and conclusions:Our results indicate that shrubs within these patches have greater average path lengths and diameters than trees.With increasing urban expansion intensity,we observed a rise in the edge density of the LTN-shrubs.Additionally,modularity within the networks of shrubs decreased as road density and urban expansion intensity increased,and increases in the average path length and average clustering coefficient for shrubs were observed with a rise in the composite terrain complexity index.Notably,patches subjected to‘leapfrog’expansion exhibited greater average patch length and diameter than those experiencing edge growth.Stomatal traits were found to have high degree centrality within these networks,signifying their substantial contribution to multiple functions.In urban remnant forests,shrubs bolster their resilience to variable environmental pressures by augmenting the complexity of their leaf trait networks.