期刊文献+
共找到260篇文章
< 1 2 13 >
每页显示 20 50 100
Kinematic calibration under the expectation maximization framework for exoskeletal inertial motion capture system
1
作者 QIN Weiwei GUO Wenxin +2 位作者 HU Chen LIU Gang SONG Tainian 《Journal of Systems Engineering and Electronics》 SCIE CSCD 2024年第3期769-779,共11页
This study presents a kinematic calibration method for exoskeletal inertial motion capture (EI-MoCap) system with considering the random colored noise such as gyroscopic drift.In this method, the geometric parameters ... This study presents a kinematic calibration method for exoskeletal inertial motion capture (EI-MoCap) system with considering the random colored noise such as gyroscopic drift.In this method, the geometric parameters are calibrated by the traditional calibration method at first. Then, in order to calibrate the parameters affected by the random colored noise, the expectation maximization (EM) algorithm is introduced. Through the use of geometric parameters calibrated by the traditional calibration method, the iterations under the EM framework are decreased and the efficiency of the proposed method on embedded system is improved. The performance of the proposed kinematic calibration method is compared to the traditional calibration method. Furthermore, the feasibility of the proposed method is verified on the EI-MoCap system. The simulation and experiment demonstrate that the motion capture precision is significantly improved by 16.79%and 7.16%respectively in comparison to the traditional calibration method. 展开更多
关键词 human motion capture kinematic calibration EXOSKELETON gyroscopic drift expectation maximization(em)
下载PDF
Parallel Expectation-Maximization Algorithm for Large Databases
2
作者 黄浩 宋瀚涛 陆玉昌 《Journal of Beijing Institute of Technology》 EI CAS 2006年第4期420-424,共5页
A new parallel expectation-maximization (EM) algorithm is proposed for large databases. The purpose of the algorithm is to accelerate the operation of the EM algorithm. As a well-known algorithm for estimation in ge... A new parallel expectation-maximization (EM) algorithm is proposed for large databases. The purpose of the algorithm is to accelerate the operation of the EM algorithm. As a well-known algorithm for estimation in generic statistical problems, the EM algorithm has been widely used in many domains. But it often requires significant computational resources. So it is needed to develop more elaborate methods to adapt the databases to a large number of records or large dimensionality. The parallel EM algorithm is based on partial Esteps which has the standard convergence guarantee of EM. The algorithm utilizes fully the advantage of parallel computation. It was confirmed that the algorithm obtains about 2.6 speedups in contrast with the standard EM algorithm through its application to large databases. The running time will decrease near linearly when the number of processors increasing. 展开更多
关键词 expectation-maximization (em algorithm incremental em lazy em parallel em
下载PDF
Integration of Expectation Maximization using Gaussian Mixture Models and Naïve Bayes for Intrusion Detection
3
作者 Loka Raj Ghimire Roshan Chitrakar 《Journal of Computer Science Research》 2021年第2期1-10,共10页
Intrusion detection is the investigation process of information about the system activities or its data to detect any malicious behavior or unauthorized activity.Most of the IDS implement K-means clustering technique ... Intrusion detection is the investigation process of information about the system activities or its data to detect any malicious behavior or unauthorized activity.Most of the IDS implement K-means clustering technique due to its linear complexity and fast computing ability.Nonetheless,it is Naïve use of the mean data value for the cluster core that presents a major drawback.The chances of two circular clusters having different radius and centering at the same mean will occur.This condition cannot be addressed by the K-means algorithm because the mean value of the various clusters is very similar together.However,if the clusters are not spherical,it fails.To overcome this issue,a new integrated hybrid model by integrating expectation maximizing(EM)clustering using a Gaussian mixture model(GMM)and naïve Bays classifier have been proposed.In this model,GMM give more flexibility than K-Means in terms of cluster covariance.Also,they use probabilities function and soft clustering,that’s why they can have multiple cluster for a single data.In GMM,we can define the cluster form in GMM by two parameters:the mean and the standard deviation.This means that by using these two parameters,the cluster can take any kind of elliptical shape.EM-GMM will be used to cluster data based on data activity into the corresponding category. 展开更多
关键词 Anomaly detection clustering em classification expectation maximization(em) Gaussian mixture model(GMM) GMM classification Intrusion detection Naïve Bayes classification
下载PDF
Study on the Development and Implementation of Different Big Data Clustering Methods
4
作者 Jean Pierre Ntayagabiri Jérémie Ndikumagenge +1 位作者 Longin Ndayisaba Boribo Kikunda Philippe 《Open Journal of Applied Sciences》 2023年第7期1163-1177,共15页
Clustering is an unsupervised learning method used to organize raw data in such a way that those with the same (similar) characteristics are found in the same class and those that are dissimilar are found in different... Clustering is an unsupervised learning method used to organize raw data in such a way that those with the same (similar) characteristics are found in the same class and those that are dissimilar are found in different classes. In this day and age, the very rapid increase in the amount of data being produced brings new challenges in the analysis and storage of this data. Recently, there is a growing interest in key areas such as real-time data mining, which reveal an urgent need to process very large data under strict performance constraints. The objective of this paper is to survey four algorithms including K-Means algorithm, FCM algorithm, EM algorithm and BIRCH, used for data clustering and then show their strengths and weaknesses. Another task is to compare the results obtained by applying each of these algorithms to the same data and to give a conclusion based on these results. 展开更多
关键词 clustering K-MEANS Fuzzy c-Means expectation maximization BIRCH
下载PDF
基于EM-KF算法的微地震信号去噪方法
5
作者 李学贵 张帅 +2 位作者 吴钧 段含旭 王泽鹏 《吉林大学学报(信息科学版)》 CAS 2024年第2期200-209,共10页
针对微地震信号能量较弱,噪声较强,使微地震弱信号难以提取问题,提出了一种基于EM-KF(Expectation Maximization Kalman Filter)的微地震信号去噪方法。通过建立一个符合微地震信号规律的状态空间模型,并利用EM(Expectation Maximizati... 针对微地震信号能量较弱,噪声较强,使微地震弱信号难以提取问题,提出了一种基于EM-KF(Expectation Maximization Kalman Filter)的微地震信号去噪方法。通过建立一个符合微地震信号规律的状态空间模型,并利用EM(Expectation Maximization)算法获取卡尔曼滤波的参数最优解,结合卡尔曼滤波,可以有效地提升微地震信号的信噪比,同时保留有效信号。通过合成和真实数据实验结果表明,与传统的小波滤波和卡尔曼滤波相比,该方法具有更高的效率和更好的精度。 展开更多
关键词 微地震 em算法 卡尔曼滤波 信噪比
下载PDF
Clustering in the Wireless Channel with a Power Weighted Statistical Mixture Model in Indoor Scenario 被引量:4
6
作者 Yupeng Li Jianhua Zhang +1 位作者 Pan Tang Lei Tian 《China Communications》 SCIE CSCD 2019年第7期83-95,共13页
Cluster-based channel model is the main stream of fifth generation mobile communications, thus the accuracy of clustering algorithm is important. Traditional Gaussian mixture model (GMM) does not consider the power in... Cluster-based channel model is the main stream of fifth generation mobile communications, thus the accuracy of clustering algorithm is important. Traditional Gaussian mixture model (GMM) does not consider the power information which is important for the channel multipath clustering. In this paper, a normalized power weighted GMM (PGMM) is introduced to model the channel multipath components (MPCs). With MPC power as a weighted factor, the PGMM can fit the MPCs in accordance with the cluster-based channel models. Firstly, expectation maximization (EM) algorithm is employed to optimize the PGMM parameters. Then, to further increase the searching ability of EM and choose the optimal number of components without resort to cross-validation, the variational Bayesian (VB) inference is employed. Finally, 28 GHz indoor channel measurement data is used to demonstrate the effectiveness of the PGMM clustering algorithm. 展开更多
关键词 channel MULTIPATH clustering mmWave Gaussian mixture model expectation maximization VARIATIONAL Bayesian INFERENCE
下载PDF
基于EM自注意力残差的图像超分辨率重建网络
7
作者 黄淑英 胡瀚洋 +2 位作者 杨勇 万伟国 吴峥 《北京航空航天大学学报》 EI CAS CSCD 北大核心 2024年第2期388-397,共10页
基于深度学习的图像超分辨率(SR)重建方法主要通过增加模型的深度来提升图像重建的质量,但同时增加了模型的计算代价,很多网络利用注意力机制来提高特征提取能力,但难以充分学习到不同区域的特征。为此,提出一种基于期望最大化(EM)自注... 基于深度学习的图像超分辨率(SR)重建方法主要通过增加模型的深度来提升图像重建的质量,但同时增加了模型的计算代价,很多网络利用注意力机制来提高特征提取能力,但难以充分学习到不同区域的特征。为此,提出一种基于期望最大化(EM)自注意力残差的图像超分辨率重建网络。该网络通过改进基础残差块,构建特征增强残差块,以更好地复用残差块中所提取的特征。为增加特征信息在空间上的相关性,引入EM自注意力机制,构建EM自注意力残差模块来增强模型中每个模块的特征提取能力,并通过级联EM自注意力残差模块来构建整个模型的特征提取结构。所获得的特征图通过上采样的图像重建模块获得重建的高分辨率图像。将所提方法与主流方法进行实验对比,结果表明:所提方法在5个流行的SR测试集上能够取得较好的主观视觉效果和更优的性能指标。 展开更多
关键词 超分辨率重建 注意力机制 期望最大化 特征增强残差块 em自注意力残差模块
下载PDF
Modeling Methods in Clustering Analysis for Time Series Data
8
作者 Naglaa A. Morad 《Open Journal of Statistics》 2020年第3期565-580,共16页
This paper is concerned about studying modeling-based methods in cluster analysis to classify data elements into clusters and thus dealing with time series in view of this classification to choose the appropriate mixe... This paper is concerned about studying modeling-based methods in cluster analysis to classify data elements into clusters and thus dealing with time series in view of this classification to choose the appropriate mixed model. The mixture-model cluster analysis technique under different covariance structures of the component densities is presented. This model is used to capture the compactness, orientation, shape, and the volume of component clusters in one expert system to handle Gaussian high dimensional heterogeneous data set. To achieve flexibility in currently practiced cluster analysis techniques. The Expectation-Maximization (EM) algorithm is considered to estimate the parameter of the covariance matrix. To judge the goodness of the models, some criteria are used. These criteria are for the covariance matrix produced by the simulation. These models have not been tackled in previous studies. The results showed the superiority criterion ICOMP PEU to other criteria.<span> </span><span>This is in addition to the success of the model based on Gaussian clusters in the prediction by using covariance matrices used in this study. The study also found the possibility of determining the optimal number of clusters by choosing the number of clusters corresponding to lower values </span><span><span><span>for the different criteria used in the study</span></span></span><span><span><span>. 展开更多
关键词 Gaussian Mixture Model-Based clustering (GMMC) The expectation-maximization (em) Algorithm AIC SBC ICOMP PEU
下载PDF
Novel method for extraction of ship target with overlaps in SAR image via EM algorithm
9
作者 CAO Rui WANG Yong 《Journal of Systems Engineering and Electronics》 SCIE CSCD 2024年第4期874-887,共14页
The quality of synthetic aperture radar(SAR)image degrades in the case of multiple imaging projection planes(IPPs)and multiple overlapping ship targets,and then the performance of target classification and recognition... The quality of synthetic aperture radar(SAR)image degrades in the case of multiple imaging projection planes(IPPs)and multiple overlapping ship targets,and then the performance of target classification and recognition can be influenced.For addressing this issue,a method for extracting ship targets with overlaps via the expectation maximization(EM)algorithm is pro-posed.First,the scatterers of ship targets are obtained via the target detection technique.Then,the EM algorithm is applied to extract the scatterers of a single ship target with a single IPP.Afterwards,a novel image amplitude estimation approach is pro-posed,with which the radar image of a single target with a sin-gle IPP can be generated.The proposed method can accom-plish IPP selection and targets separation in the image domain,which can improve the image quality and reserve the target information most possibly.Results of simulated and real mea-sured data demonstrate the effectiveness of the proposed method. 展开更多
关键词 expectation maximization(em)algorithm image processing imaging projection plane(IPP) overlapping ship tar-get synthetic aperture radar(SAR)
下载PDF
Modelling the Survival of Western Honey Bee Apis mellifera and the African Stingless Bee Meliponula ferruginea Using Semiparametric Marginal Proportional Hazards Mixture Cure Model
10
作者 Patience Isiaho Daisy Salifu +1 位作者 Samuel Mwalili Henri E. Z. Tonnang 《Journal of Data Analysis and Information Processing》 2024年第1期24-39,共16页
Classical survival analysis assumes all subjects will experience the event of interest, but in some cases, a portion of the population may never encounter the event. These survival methods further assume independent s... Classical survival analysis assumes all subjects will experience the event of interest, but in some cases, a portion of the population may never encounter the event. These survival methods further assume independent survival times, which is not valid for honey bees, which live in nests. The study introduces a semi-parametric marginal proportional hazards mixture cure (PHMC) model with exchangeable correlation structure, using generalized estimating equations for survival data analysis. The model was tested on clustered right-censored bees survival data with a cured fraction, where two bee species were subjected to different entomopathogens to test the effect of the entomopathogens on the survival of the bee species. The Expectation-Solution algorithm is used to estimate the parameters. The study notes a weak positive association between cure statuses (ρ1=0.0007) and survival times for uncured bees (ρ2=0.0890), emphasizing their importance. The odds of being uncured for A. mellifera is higher than the odds for species M. ferruginea. The bee species, A. mellifera are more susceptible to entomopathogens icipe 7, icipe 20, and icipe 69. The Cox-Snell residuals show that the proposed semiparametric PH model generally fits the data well as compared to model that assume independent correlation structure. Thus, the semi parametric marginal proportional hazards mixture cure is parsimonious model for correlated bees survival data. 展开更多
关键词 Mixture Cure Models clustered Survival Data Correlation Structure Cox-Snell Residuals em Algorithm expectation-Solution Algorithm
下载PDF
基于EM和贝叶斯网络的丢失数据填充算法 被引量:21
11
作者 李宏 阿玛尼 +1 位作者 李平 吴敏 《计算机工程与应用》 CSCD 北大核心 2010年第5期123-125,共3页
实际应用中存在大量的丢失数据的数据集,对丢失数据的处理已成为目前分类领域的研究热点。分析和比较了几种通用的丢失数据填充算法,并提出一种新的基于EM和贝叶斯网络的丢失数据填充算法。算法利用朴素贝叶斯估计出EM算法初值,然后将E... 实际应用中存在大量的丢失数据的数据集,对丢失数据的处理已成为目前分类领域的研究热点。分析和比较了几种通用的丢失数据填充算法,并提出一种新的基于EM和贝叶斯网络的丢失数据填充算法。算法利用朴素贝叶斯估计出EM算法初值,然后将EM和贝叶斯网络结合进行迭代确定最终更新器,同时得到填充后的完整数据集。实验结果表明,与经典填充算法相比,新算法具有更高的分类准确率,且节省了大量开销。 展开更多
关键词 丢失数据填充 参数更新器 最大期望值算法(em) 贝叶斯网络
下载PDF
在小波域中进行图像噪声方差估计的EM方法 被引量:21
12
作者 林哲民 康学雷 张立明 《红外与毫米波学报》 SCIE EI CAS CSCD 北大核心 2001年第3期199-202,共4页
提出一种估计图像噪声的方法 ,该方法用混合高斯概率密度模型拟合图像的小波系数中最高频率子带的直方图 ,用 EM算法估计模型的参数 ,选取其中最小的标准方差作为图像噪声标准方差 .用该方法能准确地估计图像高斯噪声的标准方差 ,尤其... 提出一种估计图像噪声的方法 ,该方法用混合高斯概率密度模型拟合图像的小波系数中最高频率子带的直方图 ,用 EM算法估计模型的参数 ,选取其中最小的标准方差作为图像噪声标准方差 .用该方法能准确地估计图像高斯噪声的标准方差 ,尤其当图像的噪声比较弱时 ,该方法比传统方法更准确 . 展开更多
关键词 小波变换 混合高斯模型 期望最大似然函数算法 图像噪声
下载PDF
EM算法在Wiener过程随机参数的超参数值估计中的应用 被引量:20
13
作者 徐廷学 王浩伟 张鑫 《系统工程与电子技术》 EI CSCD 北大核心 2015年第3期707-712,共6页
Wiener过程广泛用于产品的性能退化建模,为了便于Bayesian统计推断大都采用随机参数的共轭先验分布。针对目前的二步法得到的超参数先验估计值精度不高的问题,研究了最大期望(expectation maximization,EM)算法在Wiener过程超参数先验... Wiener过程广泛用于产品的性能退化建模,为了便于Bayesian统计推断大都采用随机参数的共轭先验分布。针对目前的二步法得到的超参数先验估计值精度不高的问题,研究了最大期望(expectation maximization,EM)算法在Wiener过程超参数先验估计中的应用。EM算法将随机参数作为隐含变量对先验信息进行整体处理,利用随机参数的期望值代替其估计值,通过Expectation和Maximization组成的递归迭代过程寻找超参数的估计值。仿真实验表明,EM算法相比于二步法提高了估计精度,特别是在采样数量较少时EM算法具有较大的精度优势。GaAs激光器实例应用表明EM算法不但具备很好的收敛性而且有良好的工程应用价值。 展开更多
关键词 可靠性 最大期望算法 WIENER过程 共轭先验分布 超参数
下载PDF
基于分裂EM算法的GMM参数估计 被引量:13
14
作者 钟金琴 辜丽川 +1 位作者 檀结庆 李莹莹 《计算机工程与应用》 CSCD 2012年第34期28-32,59,共6页
期望最大化(Expectation Maximization,EM)算法是一种求参数极大似然估计的迭代算法,常用来估计混合密度分布模型的参数。EM算法的主要问题是参数初始化依赖于先验知识且在迭代过程中容易收敛到局部极大值。提出一种新的基于分裂EM算法... 期望最大化(Expectation Maximization,EM)算法是一种求参数极大似然估计的迭代算法,常用来估计混合密度分布模型的参数。EM算法的主要问题是参数初始化依赖于先验知识且在迭代过程中容易收敛到局部极大值。提出一种新的基于分裂EM算法的GMM参数估计算法,该方法从一个确定的单高斯分布开始,在EM优化过程中逐渐分裂并估计混合分布的参数,解决了参数迭代收敛到局部极值问题。大量的实验表明,与现有的其他参数估计算法相比,算法具有较好的运算效率和估算准确性。 展开更多
关键词 高斯混合模型 期望最大化 参数估计 模式分类
下载PDF
基于快速EM算法和模糊融合的多波段遥感影像变化检测 被引量:15
15
作者 王桂婷 王幼亮 焦李成 《红外与毫米波学报》 SCIE EI CAS CSCD 北大核心 2010年第5期383-388,共6页
提出了一种基于快速EM(expectation maximization)算法和模糊融合的多波段遥感影像无监督变化检测方法.该方法首先对各波段差异影像采用基于直方图分析的快速EM迭代算法获取变化分类阈值和变化信息,随后对各波段的变化信息进行模糊融合... 提出了一种基于快速EM(expectation maximization)算法和模糊融合的多波段遥感影像无监督变化检测方法.该方法首先对各波段差异影像采用基于直方图分析的快速EM迭代算法获取变化分类阈值和变化信息,随后对各波段的变化信息进行模糊融合和判决,生成最终的变化检测图.利用真实的多波段遥感影像进行了实验,本文方法在运行时间和检测效果两个方面都具有优越性. 展开更多
关键词 变化检测 快速em算法 模糊融合 多波段遥感影像
下载PDF
基于多特征的EM算法在昆虫图像分割中的应用 被引量:11
16
作者 程小梅 耿国华 +1 位作者 周明全 黄世国 《计算机应用与软件》 CSCD 2009年第2期20-22,82,共4页
提出了一种基于多特征的EM(Expectation-maximizarion)聚类的昆虫图像分割方法。与一般的EM算法不同,这种方法首先选用适当的彩色空间对图像中的每个像素抽取颜色、纹理及空间位置等综合特征,形成基于像素的8维综合特征空间,然后采用高... 提出了一种基于多特征的EM(Expectation-maximizarion)聚类的昆虫图像分割方法。与一般的EM算法不同,这种方法首先选用适当的彩色空间对图像中的每个像素抽取颜色、纹理及空间位置等综合特征,形成基于像素的8维综合特征空间,然后采用高斯混合模型,通过EM算法估计高斯混合模型参数,利用图像像素点特征的相似度在特征空间中得到初步的区域分割,最后利用连接原理对图像区域进一步分割。实验结果表明,算法能较好地分割昆虫图像。 展开更多
关键词 特征抽取 em算法 聚类 昆虫图像分割
下载PDF
结合EM/MPM算法和Voronoi划分的图像分割方法 被引量:9
17
作者 赵泉华 李玉 何晓军 《信号处理》 CSCD 北大核心 2013年第4期503-512,共10页
为了在模型参数先验分布知识未知情况下实现基于区域和统计的图像分割,并同时获取更加精确的模型参数,提出了一种结合Voronoi划分技术、最大期望值(Expectation Maximization,EM)和最大边缘概率(Maximizationof the Posterior Marginal,... 为了在模型参数先验分布知识未知情况下实现基于区域和统计的图像分割,并同时获取更加精确的模型参数,提出了一种结合Voronoi划分技术、最大期望值(Expectation Maximization,EM)和最大边缘概率(Maximizationof the Posterior Marginal,MPM)算法的图像分割方法。该方法利用Voronoi划分技术将图像域划分为若干子区域,待分割图像中的同质区域可以由一组子区域拟合而成,并假定各同质区域内像素强度服从同一独立的正态分布,从而建立图像模型,然后结合EM/MPM算法进行图像分割和模型参数估计,其中,MPM算法用于实现面向同质区域的图像分割,EM算法用于估计图像模型参数。为了验证提出的图像分割方法,分别对合成图像和真实图像进行了分割实验,并和传统的基于像素的MRF分割结果进行对比,测试结果的定性和定量分析表明了该方法的有效性和准确性。 展开更多
关键词 VORONOI划分 最大期望值算法 最大边缘概率算法 图像分割
下载PDF
混合高斯参数估计的两种EM算法比较 被引量:6
18
作者 刘旺锁 王平波 顾雪峰 《声学技术》 CSCD 2014年第6期539-543,共5页
混合高斯模型是一种典型的非高斯概率密度模型,获得广泛应用。其参数的优效估计可以通过最大似然方法获得,但最大似然估计往往因其非线性而难以实现,故期望最大化(Expectation-Maximization,EM)迭代算法成为一种常用的替代方法。常规EM... 混合高斯模型是一种典型的非高斯概率密度模型,获得广泛应用。其参数的优效估计可以通过最大似然方法获得,但最大似然估计往往因其非线性而难以实现,故期望最大化(Expectation-Maximization,EM)迭代算法成为一种常用的替代方法。常规EM算法性能受迭代初值设置影响大,且不能对模型阶数做出估计。一种名为贪婪EM的改进算法可以克服这两个缺点,获得更为准确的模型参数估计,但其运算量一般会远大于前者。本文对这两种EM算法进行综合研究,深入挖掘两者之间的关系,并基于相同的数值仿真实例,直观地演示比较两者的性能差异。 展开更多
关键词 混合高斯 最大似然估计 期望最大化 贪婪期望最大化
下载PDF
基于EM和GMM相结合的自适应灰度图像分割算法 被引量:9
19
作者 罗胜 郑蓓蓉 叶忻泉 《光子学报》 EI CAS CSCD 北大核心 2009年第6期1581-1585,共5页
提出一种阈值自适应、EM方法估计GMM参量的图像分割算法,能够根据图像的内容结合区域和边界两方面的信息自适应地选择阈值,精确地进行图像边界分割.算法首先提取图像的边界,然后根据边界的直方图计算图像的可分割性,由可分割性确定EM方... 提出一种阈值自适应、EM方法估计GMM参量的图像分割算法,能够根据图像的内容结合区域和边界两方面的信息自适应地选择阈值,精确地进行图像边界分割.算法首先提取图像的边界,然后根据边界的直方图计算图像的可分割性,由可分割性确定EM方法的阈值进行GMM分割,最后合并图像的近似区域.实验数据表明,相比其它图像分割算法,以及固定阈值的传统EM算法,本算法的分割结果更为准确. 展开更多
关键词 图像分割 混合高斯模型 期望最大算法 自适应阈值
下载PDF
基于EM算法和GOF的宽带分布式目标检测算法 被引量:7
20
作者 李涛 冯大政 夏宇垠 《电子学报》 EI CAS CSCD 北大核心 2010年第10期2246-2250,共5页
针对K分布杂波背景下的宽带分布式目标检测问题,提出了一种基于期望最大化算法和拟合优度检测方法的检测算法.该算法利用期望最大化方法估计杂波参数,提高了估值精度.通过结合拟合优度检测有效利用了目标回波对杂波背景的干扰,并简要分... 针对K分布杂波背景下的宽带分布式目标检测问题,提出了一种基于期望最大化算法和拟合优度检测方法的检测算法.该算法利用期望最大化方法估计杂波参数,提高了估值精度.通过结合拟合优度检测有效利用了目标回波对杂波背景的干扰,并简要分析该算法的恒虚警率性.对仿真数据与实测数据的多个仿真结果表明,与传统的非相干积累方法及基于散射点密度的广义似然相比,该算法检测性能有明显的提高. 展开更多
关键词 分布式目标检测 K分布杂波 期望最大化 拟合优度检测
下载PDF
上一页 1 2 13 下一页 到第
使用帮助 返回顶部