Quality of experience ( QoE ) based scheduling algorithm of long term evalution ( LTE ) network with various traffics is studied. Utility functions are adopted to estimate mean opinion score (MOS) for different ...Quality of experience ( QoE ) based scheduling algorithm of long term evalution ( LTE ) network with various traffics is studied. Utility functions are adopted to estimate mean opinion score (MOS) for different traffics and a new MOS metric called normalized MOS is defined. A scheduling algorithm based on normalized MOS and greedy algorithm is proposed, aiming at maximizing the entirety MOS level of the whole users in the cell. We compare the performance of the proposed algorithm with other typical scheduling algorithms and the simulation results show that the algorithm pro- posed outperform other ones in term of QoE and fairness.展开更多
Background: Improving and sustaining the quality of nursing care is an intractable and persistent challenge. The patient experience of nursing care can give a different perspective on nursing quality and help clinica...Background: Improving and sustaining the quality of nursing care is an intractable and persistent challenge. The patient experience of nursing care can give a different perspective on nursing quality and help clinical nursing staff to direct quality improvement. Attempts to identify what is patient experience,the relationship with nursing care, and the application of patient experience in nursing quality improvement practice, in order to provide advices for constructing the quality standards and quality improvement strategies of nursing care.Methods: We conducted a literature review of original research publications. The database platforms Pubmed, Web of Science, China National Knowledge Infrastructure(CNKI) and Wanfang were searched from inception until end of August 2015. After screening retrieved articles, 40 sources(articles and organizational websites) were selected for analysis for the connotation, development and application of patient experience in nursing quality researches.Results: Our study identified several concepts about patient experience, roughly sorted out the development path of patient experience in worldwide and the application of patient experience in nursing quality improvement. It points out four precautions when applying patient experience in nursing quality improvement, which are differentiating patient satisfaction and patient experience, choosing appropriate data collection method and appropriate feedback time, and the last but the most important, applying theories to actual clinical practice.Conclusions: Professional indexes are important to maintain the care quality, but it cannot fully reflect quality of nursing care, which needs patient experience as the supplement. Nursing staffs need to make more efforts to enhance patient's nursing care experience, and apply the research results to clinical practice, and finally make patient-centered care come true. For future study, the evaluation system and management strategies about patient experience need to be developed to guide nursing quality improvement.展开更多
Real-time video application usage is increasing rapidly. Hence, accurate and efficient assessment of video Quality of Experience (QoE) is a crucial concern for end-users and communication service providers. After cons...Real-time video application usage is increasing rapidly. Hence, accurate and efficient assessment of video Quality of Experience (QoE) is a crucial concern for end-users and communication service providers. After considering the relevant literature on QoS, QoE and characteristics of video trans-missions, this paper investigates the role of big data in video QoE assessment. The impact of QoS parameters on video QoE are established based on test-bed experiments. Essentially big data is employed as a method to establish a sensible mapping between network QoS parameters and the resulting video QoE. Ultimately, based on the outcome of experiments, recommendations/re- quirements are made for a Big Data-driven QoE model.展开更多
With the rapid growth of the Internet of Things paradigm,a tremendous number of applications and services that require minimal or no human involvement have been developed to enhance the quality of everyday life in var...With the rapid growth of the Internet of Things paradigm,a tremendous number of applications and services that require minimal or no human involvement have been developed to enhance the quality of everyday life in various domains.In order to ensure that such services provide their functionalities with the expected quality,it is essential tomeasure and evaluate this quality,which can be in some cases a challenging task due to the lack of human intervention and feedback.Recently,the vast majority of the Quality of Experience QoE works mainly address the multimedia services.However,the introduction of Internet of Things IoT has brought a new level of complexity into the field of QoE evaluation.With the emerging of the new IoT technologies such as machine to machine communication and artificial intelligence,there is a crucial demand to utilize additional evaluation metrics alongside the traditional subjective and objective human factors and network quality factors.In this systematic review,a comprehensive survey of the QoE evaluation in IoT is presented.It reviews the existing quality of experience definitions,influencing factors,metrics,and models.The review is concluded by identifying the current gaps in the literature and suggested some future research directions accordingly.展开更多
Students'demand for online learning has exploded during the post-COvID-19 pandemic era.However,due to their poor learning experience,students'dropout rate and learning performance of online learning are not al...Students'demand for online learning has exploded during the post-COvID-19 pandemic era.However,due to their poor learning experience,students'dropout rate and learning performance of online learning are not always satisfactory.The technical advantages of Beyond Fifth Generation(B5G)can guarantee a good multimedia Quality of Experience(QoE).As a special case of multimedia services,online learning takes into account both the usability of the service and the cognitive development of the users.Factors that affect the Quality of Online Learning Experience(OL-QoE)become more complicated.To get over this dilemma,we propose a systematic scheme by integrating big data,Machine Learning(ML)technologies,and educational psychology theory.Specifically,we first formulate a general definition of OL-QoE by data analysis and experimental verification.This formula considers both the subjective and objective factors(i.e.,video watching ratio and test scores)that most affect OLQoE.Then,we induce an extended layer to the classic Broad Learning System(BLS)to construct an Extended Broad Learning System(EBLS)for the students'OL-QoE prediction.Since the extended layer can increase the width of the BLS model and reduce the redundant nodes of BLS,the proposed EBLS can achieve a trade-off between the prediction accuracy and computation complexity.Finally,we provide a series of early intervention suggestions for different types of students according to their predicted OL-QoE values.Through timely interventions,their OL-QoE and learning performance can be improved.Experimental results verify the effectiveness oftheproposed scheme.展开更多
In recent years,under the guidance of the national“all-for-one tourism”and“integration of culture and tourism”development policies,humanistic leisure tourism has become the current hot spot in the development of C...In recent years,under the guidance of the national“all-for-one tourism”and“integration of culture and tourism”development policies,humanistic leisure tourism has become the current hot spot in the development of Chinese tourism industry.In 2013,China promulgated the National Tourism and Leisure Outline(2013-2020),which boosted the development of tourism and leisure consumption of urban and rural residents.In 2016,the State Council issued the“Several Opinions on Further Promoting the Construction of New Urbanization”,which clearly stated that it is necessary to“accelerate the cultivation of characteristic small towns”.The construction of small towns(blocks)led by the integration of culture and tourism has gradually become a new driving force for local economic development.In 2020,the global outbreak of the COVID-19 and normalized prevention and control measures have made the choice of tourism and leisure destinations more localized and short-distance.Characteristic leisure blocks and small towns have increasingly become important destinations for people to travel and leisure activities.Therefore,this article takes Shenzhen Nantou Ancient City as the research area,and uses literature review,questionnaire survey,and statistical survey methods(SPSS.25 and PLS.3.0)to obtain relevant literature and data and describe them.Statistical analysis and confirmatory factor analysis are designed to examine the relationship between the cultural authenticity of leisure blocks,product combination,accessibility,the sense of place identification,recreational intentions,and experience quality,diagnose and discover tourism from them,discover the problems existing on the supply side of tourism object,and provide guidance and suggestions for the construction and development of cultural tourism and leisure characteristic blocks.Finally,this paper tests 10 hypotheses and draws research conclusions:(1)Cultural authenticity has positive impact on recreational intention,place identification,and experience quality in humanistic leisure tourism.(2)Tourism product combination has positive impact on recreational intention and experience quality.(3)Accessibility can affect recreational intention and experience quality in a positive way.(4)Place identification can affect recreational intention in a positive way.(5)Experience quality has positive impact on recreational intention and place identification.展开更多
The quality of experience( QoE) evaluation model for voice over IP( VoI P) service is studied to analyze the impact of network parameters on voice quality and monitor voice quality in real-time for operators.First...The quality of experience( QoE) evaluation model for voice over IP( VoI P) service is studied to analyze the impact of network parameters on voice quality and monitor voice quality in real-time for operators.Firstly,the influence of some network parameters on the voice quality of VoI P is investigated. Then,a simulation platform for VoI P transmission is built to collect voice data under different network enviornments. According to the simulation results,a new mapping model between these arguments and VoI P voice quality is deduced. Finally,the accuracy of this voice quality evaluation model is examined and the results demanstrate that it has high reliability and feasibility.展开更多
To evaluate the video quality, we tested sample videos delivered using HTTP adaptive streaming (HAS) in LTE network. In order to establish a correlation between radio access network (RAN) performance and quality o...To evaluate the video quality, we tested sample videos delivered using HTTP adaptive streaming (HAS) in LTE network. In order to establish a correlation between radio access network (RAN) performance and quality of experience ( QoE), we set up a testbed under different radio im- pairment conditions with three parameters: signal to interference and noise ratio ( SINR), an amount of available network resource and a round trip latency. End users graded each video in a mobile equipment with their QoE Mearnwhile, we used a nonlinear model to simulate the comprehensive pre- dicted mean opinion score (pMOS). Our results show that the nonlinear model can predict the enduser' s feedback. The pearson correlation coefficient (PCC) of the model is larger than 0. 9. This demonstrate that the output of the model has a high correlation with the end users' ratings and can reflect the QoE accurately. The method we developed will help mobile network operators evaluate the RAN performance of its QoE. It can also be used for HAS service to optimize LTE network and improve its QoE.展开更多
Existing systems use key performance indicators(KPIs)as metrics for physical layer(PHY)optimization,which suffers from the problem of overoptimization,because some unnecessary PHY enhancements are imperceptible to ter...Existing systems use key performance indicators(KPIs)as metrics for physical layer(PHY)optimization,which suffers from the problem of overoptimization,because some unnecessary PHY enhancements are imperceptible to terminal users and thus induce additional cost and energy waste.Therefore,it is necessary to utilize directly the quality of experience(QoE)of user as a metric of optimization,which can achieve the global optimum of QoE under cost and energy constraints.However,QoE is still a metric of application layer that cannot be easily used to design and optimize the PHY.To address this problem,we in this paper propose a novel end-to-end QoE(E2E-QoE)based optimization architecture at the user-side for the first time.Specifically,a cross-layer parameterized model is proposed to establish the relationship between PHY and E2E-QoE.Based on this,an E2E-QoE oriented PHY anomaly diagnosis method is further designed to locate the time and root cause of anomalies.Finally,we investigate to optimize the PHY algorithm directly based on the E2E-QoE.The proposed frameworks and algorithms are all validated using the data from real fifth-generation(5G)mobile system,which show that using E2E-QoE as the metric of PHY optimization is feasible and can outperform existing schemes.展开更多
Enabling high mobility applications in millimeter wave(mmWave)based systems opens up a slew of new possibilities,including vehicle communi-cations in addition to wireless virtual/augmented reality.The narrow beam usag...Enabling high mobility applications in millimeter wave(mmWave)based systems opens up a slew of new possibilities,including vehicle communi-cations in addition to wireless virtual/augmented reality.The narrow beam usage in addition to the millimeter waves sensitivity might block the coverage along with the reliability of the mobile links.In this research work,the improvement in the quality of experience faced by the user for multimedia-related applications over the millimeter-wave band is investigated.The high attenuation loss in high frequencies is compensated with a massive array structure named Multiple Input and Multiple Output(MIMO)which is utilized in a hyperdense environment called heterogeneous networks(HetNet).The optimization problem which arises while maximizing the Mean Opinion Score(MOS)is analyzed along with the QoE(Quality of Experience)metric by considering the Base Station(BS)powers in addition to the needed Quality of Service(QoS).Most of the approaches related to wireless network communication are not suitable for the millimeter-wave band because of its problems due to high complexity and its dynamic nature.Hence a deep reinforcement learning framework is developed for tackling the same opti-mization problem.In this work,a Fuzzy-based Deep Convolutional Neural Net-work(FDCNN)is proposed in addition to a Deep Reinforcing Learning Framework(DRLF)for extracting the features of highly correlated data.The investigational results prove that the proposed method yields the highest satisfac-tion to the user by increasing the number of antennas in addition with the small-scale antennas at the base stations.The proposed work outperforms in terms of MOS with multiple antennas.展开更多
A resource allocation protocol is presented in an orthogonal frequency division multiple access (OFDMA) cognitive radio (CR) network with a hybrid model which combines overlay and underlay models. Without disrupti...A resource allocation protocol is presented in an orthogonal frequency division multiple access (OFDMA) cognitive radio (CR) network with a hybrid model which combines overlay and underlay models. Without disrupting the primary user (PU) transmissions, the overlay model allows the secondary user (SU) to utilize opportunistically the idle sub-channels; the underlay model allows the SU to occupy the same sub-channels with PU. The proposed protocols are designed for maximizing the quality of experience (QoE) of CR users and switching dynamically between the overlay and underlay models. QoE is measured by the mean opinion score (MOS) rather than simply fulfilling the physical and medium access control (MAC) layer requirements. The simulations considering the file transfer and video stream services show that the proposed resource allocation strategy is spectrum efficient.展开更多
In modern wireless communication network, the increased consumer demands for multi-type applications and high quality services have become a prominent trend, and put considerable pressure on the wireless network. In t...In modern wireless communication network, the increased consumer demands for multi-type applications and high quality services have become a prominent trend, and put considerable pressure on the wireless network. In that case, the Quality of Experience(Qo E) has received much attention and has become a key performance measurement for the application and service. In order to meet the users' expectations, the management of the resource is crucial in wireless network, especially the Qo E based resource allocation. One of the effective way for resource allocation management is accurate application identification. In this paper, we propose a novel deep learning based method for application identification. We first analyse the requirement of managing Qo E for wireless communication, and review the limitation of the traditional identification methods. After that, a deep learning based method is proposed for automatically extracting the features and identifying the type of application. The proposed method is evaluated by using the practical wireless traffic data, and the experiments verify the effectiveness of our method.展开更多
In remote terrestrial-satellite networks, caching is a very promising technique to alleviate the burden of space cloudlet(e.g., cache-enabled satellite user terminal) and to improve subscribers' quality of experie...In remote terrestrial-satellite networks, caching is a very promising technique to alleviate the burden of space cloudlet(e.g., cache-enabled satellite user terminal) and to improve subscribers' quality of experience(Qo E) in terms of buffering delay and achievable video streaming rate. In this paper, we studied a Qo E-driven caching placement optimization problem for video streaming that takes into account the required video streaming rate and the social relationship among users. Social ties between users are used to designate a set of helpers with caching capability, which can cache popular files proactively when the cloudlet is idle. We model the utility function of Qo E as a logarithmic function. Then, the caching placement problem is formulated as an optimization problem to maximize the user's average Qo E subject to the storage capacity constraints of the helpers and the cloudlets. Furthermore, we reformulate the problem into a monotone submodular optimization problem with a partition matroid constraint, and an efficient greedy algorithm with 1-1 e approximation ratio is proposed to solve it. Simulation results show that the proposed caching placement approach significantly outperforms the traditional approaches in terms of Qo E, while yields about the same delay and hit ratio performance compare to the delay-minimized scheme.展开更多
Mobile Edge Computing (MEC) has been considered a promising solution that can address capacity and performance challenges in legacy systems such as Mobile Cloud Computing (MCC). In particular, such challenges include ...Mobile Edge Computing (MEC) has been considered a promising solution that can address capacity and performance challenges in legacy systems such as Mobile Cloud Computing (MCC). In particular, such challenges include intolerable delay, congestion in the core network, insufficient Quality of Experience (QoE), high cost of resource utility, such as energy and bandwidth. The aforementioned challenges originate from limited resources in mobile devices, the multi-hop connection between end-users and the cloud, high pressure from computation-intensive and delay-critical applications. Considering the limited resource setting at the MEC, improving the efficiency of task offloading in terms of both energy and delay in MEC applications is an important and urgent problem to be solved. In this paper, the key objective is to propose a task offloading scheme that minimizes the overall energy consumption along with satisfying capacity and delay requirements. Thus, we propose a MEC-assisted energy-efficient task offloading scheme that leverages the cooperative MEC framework. To achieve energy efficiency, we propose a novel hybrid approach established based on Particle Swarm Optimization (PSO) and Grey Wolf Optimizer (GWO) to solve the optimization problem. The proposed approach considers efficient resource allocation such as sub-carriers, power, and bandwidth for offloading to guarantee minimum energy consumption. The simulation results demonstrate that the proposed strategy is computational-efficient compared to benchmark methods. Moreover, it improves energy utilization, energy gain, response delay, and offloading utility.展开更多
Hypertext transfer protocol(HTTP) adaptive streaming(HAS) plays a key role in mobile video transmission. Considering the multi-segment and multi-rate features of HAS, this paper proposes a buffer-driven resource manag...Hypertext transfer protocol(HTTP) adaptive streaming(HAS) plays a key role in mobile video transmission. Considering the multi-segment and multi-rate features of HAS, this paper proposes a buffer-driven resource management(BDRM) method to enhance HAS quality of experience(QoE) in mobile network. Different from the traditional methods only focusing on base station side without considering the buffer, the proposed method takes both station and client sides into account and end user's buffer plays as the drive of whole schedule process. The proposed HAS QoE influencing factors are composed of initial delay, rebuffering and quality level. The BDRM method decomposes the HAS QoE maximization problem into client and base station sides separately to solve it in multicell and multi-user video playing scene in mobile network. In client side, the decision is made based on buffer probe and rate request algorithm by each user separately. It guarantees the less rebuffering events and decides which HAS segment rate to fetch. While, in the base station side, the schedule of wireless resource is made to maximize the quality level of all access clients and decides the final rate pulled from HAS server. The drive of buffer and twice rate request schemes make BDRMtake full advantage of HAS's multi-segment and multi-rate features. As to the simulation results, compared with proportional fair(PF), Max C/I and traditional HAS schedule(THS) methods, the proposed BDRM method decreases rebuffering percent to 1.96% from 11.1% with PF and from 7.01% with THS and increases the mean MOS of all users to 3.94 from 3.42 with PF method and from 2.15 with Max C/I method. It also guarantees a high fairness with 0.98 from the view of objective and subjective assessment metrics.展开更多
With the popularity of smart handheld devices, mobile streaming video has multiplied the global network traffic in recent years. A huge concern of users' quality of experience(Qo E) has made rate adaptation method...With the popularity of smart handheld devices, mobile streaming video has multiplied the global network traffic in recent years. A huge concern of users' quality of experience(Qo E) has made rate adaptation methods very attractive. In this paper, we propose a two-phase rate adaptation strategy to improve users' real-time video Qo E. First, to measure and assess video Qo E, we provide a continuous Qo E prediction engine modeled by RNN recurrent neural network. Different from traditional Qo E models which consider the Qo E-aware factors separately or incompletely, our RNN-Qo E model accounts for three descriptive factors(video quality, rebuffering, and rate change) and reflects the impact of cognitive memory and recency. Besides, the video playing is separated into the initial startup phase and the steady playback phase, and we takes different optimization goals for each phase: the former aims at shortening the startup delay while the latter ameliorates the video quality and the rebufferings. Simulation results have shown that RNN-Qo E can follow the subjective Qo E quite well, and the proposed strategy can effectively reduce the occurrence of rebufferings caused by the mismatch between the requested video rates and the fluctuated throughput and attains standout performance on real-time Qo E compared with classical rate adaption methods.展开更多
Driven by the continuous penetration of high data rate services and applications,a large amount of unregulated visible light spectrum is used for communication to fully meet the needs of 6th generation(6G)mobile techn...Driven by the continuous penetration of high data rate services and applications,a large amount of unregulated visible light spectrum is used for communication to fully meet the needs of 6th generation(6G)mobile technologies.Visible light communication(VLC)faces many challenges as a solution that complements existing radio frequency(RF)networks.This paper studies the optimal configuration of LEDs in indoor environments under the constraints of illumination and quality of experience(QoE).Based on the Voronoi tessellation(VT)and centroidal Voronoi tessellation(CVT)theory,combined with the Lloyd’s algorithm,we propose two approaches for optimizing LED deployments to meet the illumination and QoE requirements of all users.Focusing on(i)the minimization of the number of LEDs to be installed in order to meet illumination and average QoE constraints,and(ii)the maximization of the average QoE of users to be served with a fixed number of LEDs.Monte Carlo simulations are carried out for different user distribution compared with hexagonal,square and VT deployment.The simulation results illustrate that under the same conditions,the proposed deployment approach can provide less LEDs and achieve better QoE performance.展开更多
The accuracy of the traditional assessment method of the quality of experience(Qo E) has been facing challenges with the growth of high-definition(HD) video streaming services.Image display-quality damage is the main ...The accuracy of the traditional assessment method of the quality of experience(Qo E) has been facing challenges with the growth of high-definition(HD) video streaming services.Image display-quality damage is the main factor that affects the Qo E in HD video services through UDP network transmission.In this paper,we introduce a novel objective factor known as image damage accumulation(IDA) to assess user's Qo E in HD video services.First,this paper quantitatively analyzed the effect on user quality of experience by IDA and established a mapping relationship between mean opinion scores and IDA.Furthermore,the probability of image damage caused by compression and transmission were analyzed.Based on this analysis,an objective Qo E assessment and prediction method for HD video stream service that evaluated the user experience according to IDA are proposed.The proposed method can achieve assessment and prediction accuracy on three distinct subjective tests.展开更多
Mobile broadband(MBB)networks are expanding rapidly to deliver higher data speeds.The fifth-generation cellular network promises enhanced-MBB with high-speed data rates,low power connectivity,and ultralow latency vide...Mobile broadband(MBB)networks are expanding rapidly to deliver higher data speeds.The fifth-generation cellular network promises enhanced-MBB with high-speed data rates,low power connectivity,and ultralow latency video streaming.However,existing cellular networks are unable to perform well due to high latency and low bandwidth,which degrades the performance of various applications.As a result,monitoring and evaluation of the performance of these network-supported services is critical.Mobile network providers optimize and monitor their network performance to ensure the highest quality of service to their end-users.This paper proposes a Bayesian model to estimate the minimum opinion score(MOS)of video streaming services for any particular cellular network.The MOS is the most commonly used metric to assess the quality of experience.The proposed Bayesian model consists of several input data,namely,round-trip time,stalling load,and bite rates.It was examined and evaluated using several test data sizes with various performance metrics.Simulation results show the proposed Bayesian network achieved higher accuracy overall test data sizes than a neural network.The proposed Bayesian network obtained a remarkable overall accuracy of 90.36%and outperformed the neural network.展开更多
基金Supported by China National S&T Major Project(2013ZX03003002-003)Beijing Natural Science Foundation(4152047)National High Technology Research and Development Program of China(863Program)(2014AA01A701)
文摘Quality of experience ( QoE ) based scheduling algorithm of long term evalution ( LTE ) network with various traffics is studied. Utility functions are adopted to estimate mean opinion score (MOS) for different traffics and a new MOS metric called normalized MOS is defined. A scheduling algorithm based on normalized MOS and greedy algorithm is proposed, aiming at maximizing the entirety MOS level of the whole users in the cell. We compare the performance of the proposed algorithm with other typical scheduling algorithms and the simulation results show that the algorithm pro- posed outperform other ones in term of QoE and fairness.
基金supported by General Project of the National Natural Science Foundation of China(No.71573097)
文摘Background: Improving and sustaining the quality of nursing care is an intractable and persistent challenge. The patient experience of nursing care can give a different perspective on nursing quality and help clinical nursing staff to direct quality improvement. Attempts to identify what is patient experience,the relationship with nursing care, and the application of patient experience in nursing quality improvement practice, in order to provide advices for constructing the quality standards and quality improvement strategies of nursing care.Methods: We conducted a literature review of original research publications. The database platforms Pubmed, Web of Science, China National Knowledge Infrastructure(CNKI) and Wanfang were searched from inception until end of August 2015. After screening retrieved articles, 40 sources(articles and organizational websites) were selected for analysis for the connotation, development and application of patient experience in nursing quality researches.Results: Our study identified several concepts about patient experience, roughly sorted out the development path of patient experience in worldwide and the application of patient experience in nursing quality improvement. It points out four precautions when applying patient experience in nursing quality improvement, which are differentiating patient satisfaction and patient experience, choosing appropriate data collection method and appropriate feedback time, and the last but the most important, applying theories to actual clinical practice.Conclusions: Professional indexes are important to maintain the care quality, but it cannot fully reflect quality of nursing care, which needs patient experience as the supplement. Nursing staffs need to make more efforts to enhance patient's nursing care experience, and apply the research results to clinical practice, and finally make patient-centered care come true. For future study, the evaluation system and management strategies about patient experience need to be developed to guide nursing quality improvement.
文摘Real-time video application usage is increasing rapidly. Hence, accurate and efficient assessment of video Quality of Experience (QoE) is a crucial concern for end-users and communication service providers. After considering the relevant literature on QoS, QoE and characteristics of video trans-missions, this paper investigates the role of big data in video QoE assessment. The impact of QoS parameters on video QoE are established based on test-bed experiments. Essentially big data is employed as a method to establish a sensible mapping between network QoS parameters and the resulting video QoE. Ultimately, based on the outcome of experiments, recommendations/re- quirements are made for a Big Data-driven QoE model.
文摘With the rapid growth of the Internet of Things paradigm,a tremendous number of applications and services that require minimal or no human involvement have been developed to enhance the quality of everyday life in various domains.In order to ensure that such services provide their functionalities with the expected quality,it is essential tomeasure and evaluate this quality,which can be in some cases a challenging task due to the lack of human intervention and feedback.Recently,the vast majority of the Quality of Experience QoE works mainly address the multimedia services.However,the introduction of Internet of Things IoT has brought a new level of complexity into the field of QoE evaluation.With the emerging of the new IoT technologies such as machine to machine communication and artificial intelligence,there is a crucial demand to utilize additional evaluation metrics alongside the traditional subjective and objective human factors and network quality factors.In this systematic review,a comprehensive survey of the QoE evaluation in IoT is presented.It reviews the existing quality of experience definitions,influencing factors,metrics,and models.The review is concluded by identifying the current gaps in the literature and suggested some future research directions accordingly.
基金supported by Postgraduate Research&Practice Innovation Program of Jiangsu Province(Grant No.KYCX20_0733)Education Reform Foundation of Jiangsu Province(Grant No.2021JSJG364)+1 种基金Key Education Reform Foundation of NJUPT(Grant No.JG00220JX02,JG00218JX03,JG00215JX01,JG00214JX52)the Priority Academic Program Development of Jiangsu Higher Education Institutions。
文摘Students'demand for online learning has exploded during the post-COvID-19 pandemic era.However,due to their poor learning experience,students'dropout rate and learning performance of online learning are not always satisfactory.The technical advantages of Beyond Fifth Generation(B5G)can guarantee a good multimedia Quality of Experience(QoE).As a special case of multimedia services,online learning takes into account both the usability of the service and the cognitive development of the users.Factors that affect the Quality of Online Learning Experience(OL-QoE)become more complicated.To get over this dilemma,we propose a systematic scheme by integrating big data,Machine Learning(ML)technologies,and educational psychology theory.Specifically,we first formulate a general definition of OL-QoE by data analysis and experimental verification.This formula considers both the subjective and objective factors(i.e.,video watching ratio and test scores)that most affect OLQoE.Then,we induce an extended layer to the classic Broad Learning System(BLS)to construct an Extended Broad Learning System(EBLS)for the students'OL-QoE prediction.Since the extended layer can increase the width of the BLS model and reduce the redundant nodes of BLS,the proposed EBLS can achieve a trade-off between the prediction accuracy and computation complexity.Finally,we provide a series of early intervention suggestions for different types of students according to their predicted OL-QoE values.Through timely interventions,their OL-QoE and learning performance can be improved.Experimental results verify the effectiveness oftheproposed scheme.
文摘In recent years,under the guidance of the national“all-for-one tourism”and“integration of culture and tourism”development policies,humanistic leisure tourism has become the current hot spot in the development of Chinese tourism industry.In 2013,China promulgated the National Tourism and Leisure Outline(2013-2020),which boosted the development of tourism and leisure consumption of urban and rural residents.In 2016,the State Council issued the“Several Opinions on Further Promoting the Construction of New Urbanization”,which clearly stated that it is necessary to“accelerate the cultivation of characteristic small towns”.The construction of small towns(blocks)led by the integration of culture and tourism has gradually become a new driving force for local economic development.In 2020,the global outbreak of the COVID-19 and normalized prevention and control measures have made the choice of tourism and leisure destinations more localized and short-distance.Characteristic leisure blocks and small towns have increasingly become important destinations for people to travel and leisure activities.Therefore,this article takes Shenzhen Nantou Ancient City as the research area,and uses literature review,questionnaire survey,and statistical survey methods(SPSS.25 and PLS.3.0)to obtain relevant literature and data and describe them.Statistical analysis and confirmatory factor analysis are designed to examine the relationship between the cultural authenticity of leisure blocks,product combination,accessibility,the sense of place identification,recreational intentions,and experience quality,diagnose and discover tourism from them,discover the problems existing on the supply side of tourism object,and provide guidance and suggestions for the construction and development of cultural tourism and leisure characteristic blocks.Finally,this paper tests 10 hypotheses and draws research conclusions:(1)Cultural authenticity has positive impact on recreational intention,place identification,and experience quality in humanistic leisure tourism.(2)Tourism product combination has positive impact on recreational intention and experience quality.(3)Accessibility can affect recreational intention and experience quality in a positive way.(4)Place identification can affect recreational intention in a positive way.(5)Experience quality has positive impact on recreational intention and place identification.
基金Supported by China National S&T Major Project(2012ZX03001034MCM 201240113)
文摘The quality of experience( QoE) evaluation model for voice over IP( VoI P) service is studied to analyze the impact of network parameters on voice quality and monitor voice quality in real-time for operators.Firstly,the influence of some network parameters on the voice quality of VoI P is investigated. Then,a simulation platform for VoI P transmission is built to collect voice data under different network enviornments. According to the simulation results,a new mapping model between these arguments and VoI P voice quality is deduced. Finally,the accuracy of this voice quality evaluation model is examined and the results demanstrate that it has high reliability and feasibility.
基金Supported by China National S&T Major Project(2013ZX03003002-003)Beijing Natural Science Foundation(4152047)111Project of China(B14010)
文摘To evaluate the video quality, we tested sample videos delivered using HTTP adaptive streaming (HAS) in LTE network. In order to establish a correlation between radio access network (RAN) performance and quality of experience ( QoE), we set up a testbed under different radio im- pairment conditions with three parameters: signal to interference and noise ratio ( SINR), an amount of available network resource and a round trip latency. End users graded each video in a mobile equipment with their QoE Mearnwhile, we used a nonlinear model to simulate the comprehensive pre- dicted mean opinion score (pMOS). Our results show that the nonlinear model can predict the enduser' s feedback. The pearson correlation coefficient (PCC) of the model is larger than 0. 9. This demonstrate that the output of the model has a high correlation with the end users' ratings and can reflect the QoE accurately. The method we developed will help mobile network operators evaluate the RAN performance of its QoE. It can also be used for HAS service to optimize LTE network and improve its QoE.
文摘Existing systems use key performance indicators(KPIs)as metrics for physical layer(PHY)optimization,which suffers from the problem of overoptimization,because some unnecessary PHY enhancements are imperceptible to terminal users and thus induce additional cost and energy waste.Therefore,it is necessary to utilize directly the quality of experience(QoE)of user as a metric of optimization,which can achieve the global optimum of QoE under cost and energy constraints.However,QoE is still a metric of application layer that cannot be easily used to design and optimize the PHY.To address this problem,we in this paper propose a novel end-to-end QoE(E2E-QoE)based optimization architecture at the user-side for the first time.Specifically,a cross-layer parameterized model is proposed to establish the relationship between PHY and E2E-QoE.Based on this,an E2E-QoE oriented PHY anomaly diagnosis method is further designed to locate the time and root cause of anomalies.Finally,we investigate to optimize the PHY algorithm directly based on the E2E-QoE.The proposed frameworks and algorithms are all validated using the data from real fifth-generation(5G)mobile system,which show that using E2E-QoE as the metric of PHY optimization is feasible and can outperform existing schemes.
文摘Enabling high mobility applications in millimeter wave(mmWave)based systems opens up a slew of new possibilities,including vehicle communi-cations in addition to wireless virtual/augmented reality.The narrow beam usage in addition to the millimeter waves sensitivity might block the coverage along with the reliability of the mobile links.In this research work,the improvement in the quality of experience faced by the user for multimedia-related applications over the millimeter-wave band is investigated.The high attenuation loss in high frequencies is compensated with a massive array structure named Multiple Input and Multiple Output(MIMO)which is utilized in a hyperdense environment called heterogeneous networks(HetNet).The optimization problem which arises while maximizing the Mean Opinion Score(MOS)is analyzed along with the QoE(Quality of Experience)metric by considering the Base Station(BS)powers in addition to the needed Quality of Service(QoS).Most of the approaches related to wireless network communication are not suitable for the millimeter-wave band because of its problems due to high complexity and its dynamic nature.Hence a deep reinforcement learning framework is developed for tackling the same opti-mization problem.In this work,a Fuzzy-based Deep Convolutional Neural Net-work(FDCNN)is proposed in addition to a Deep Reinforcing Learning Framework(DRLF)for extracting the features of highly correlated data.The investigational results prove that the proposed method yields the highest satisfac-tion to the user by increasing the number of antennas in addition with the small-scale antennas at the base stations.The proposed work outperforms in terms of MOS with multiple antennas.
基金The National Natural Science Foundation of China(No.61271207,61372104)the Natural Science Foundation of Jiangsu Province(No.BK20130530)+1 种基金the Natural Science Foundation of the Jiangsu Higher Education Institutions of China(No.12KJB510002)the Programs of Senior Talent Foundation of Jiangsu University(No.11JDG130)
文摘A resource allocation protocol is presented in an orthogonal frequency division multiple access (OFDMA) cognitive radio (CR) network with a hybrid model which combines overlay and underlay models. Without disrupting the primary user (PU) transmissions, the overlay model allows the secondary user (SU) to utilize opportunistically the idle sub-channels; the underlay model allows the SU to occupy the same sub-channels with PU. The proposed protocols are designed for maximizing the quality of experience (QoE) of CR users and switching dynamically between the overlay and underlay models. QoE is measured by the mean opinion score (MOS) rather than simply fulfilling the physical and medium access control (MAC) layer requirements. The simulations considering the file transfer and video stream services show that the proposed resource allocation strategy is spectrum efficient.
基金supported by NSAF under Grant(No.U1530117)National Natural Science Foundation of China(No.61471022 and No.61201156)
文摘In modern wireless communication network, the increased consumer demands for multi-type applications and high quality services have become a prominent trend, and put considerable pressure on the wireless network. In that case, the Quality of Experience(Qo E) has received much attention and has become a key performance measurement for the application and service. In order to meet the users' expectations, the management of the resource is crucial in wireless network, especially the Qo E based resource allocation. One of the effective way for resource allocation management is accurate application identification. In this paper, we propose a novel deep learning based method for application identification. We first analyse the requirement of managing Qo E for wireless communication, and review the limitation of the traditional identification methods. After that, a deep learning based method is proposed for automatically extracting the features and identifying the type of application. The proposed method is evaluated by using the practical wireless traffic data, and the experiments verify the effectiveness of our method.
基金supported by Natural Science Foundation of China under Grant No.91738202,91438206
文摘In remote terrestrial-satellite networks, caching is a very promising technique to alleviate the burden of space cloudlet(e.g., cache-enabled satellite user terminal) and to improve subscribers' quality of experience(Qo E) in terms of buffering delay and achievable video streaming rate. In this paper, we studied a Qo E-driven caching placement optimization problem for video streaming that takes into account the required video streaming rate and the social relationship among users. Social ties between users are used to designate a set of helpers with caching capability, which can cache popular files proactively when the cloudlet is idle. We model the utility function of Qo E as a logarithmic function. Then, the caching placement problem is formulated as an optimization problem to maximize the user's average Qo E subject to the storage capacity constraints of the helpers and the cloudlets. Furthermore, we reformulate the problem into a monotone submodular optimization problem with a partition matroid constraint, and an efficient greedy algorithm with 1-1 e approximation ratio is proposed to solve it. Simulation results show that the proposed caching placement approach significantly outperforms the traditional approaches in terms of Qo E, while yields about the same delay and hit ratio performance compare to the delay-minimized scheme.
基金supported by the Chinese Scholarship Council(CSC)under MOFCOM(No.2017MOC010907)any opinions,findings,and conclusions are those of the authors and do not necessarily reflect the views of the above agency.
文摘Mobile Edge Computing (MEC) has been considered a promising solution that can address capacity and performance challenges in legacy systems such as Mobile Cloud Computing (MCC). In particular, such challenges include intolerable delay, congestion in the core network, insufficient Quality of Experience (QoE), high cost of resource utility, such as energy and bandwidth. The aforementioned challenges originate from limited resources in mobile devices, the multi-hop connection between end-users and the cloud, high pressure from computation-intensive and delay-critical applications. Considering the limited resource setting at the MEC, improving the efficiency of task offloading in terms of both energy and delay in MEC applications is an important and urgent problem to be solved. In this paper, the key objective is to propose a task offloading scheme that minimizes the overall energy consumption along with satisfying capacity and delay requirements. Thus, we propose a MEC-assisted energy-efficient task offloading scheme that leverages the cooperative MEC framework. To achieve energy efficiency, we propose a novel hybrid approach established based on Particle Swarm Optimization (PSO) and Grey Wolf Optimizer (GWO) to solve the optimization problem. The proposed approach considers efficient resource allocation such as sub-carriers, power, and bandwidth for offloading to guarantee minimum energy consumption. The simulation results demonstrate that the proposed strategy is computational-efficient compared to benchmark methods. Moreover, it improves energy utilization, energy gain, response delay, and offloading utility.
基金supported by the 863 project (Grant No. 2014AA01A701) Beijing Natural Science Foundation (Grant No. 4152047)
文摘Hypertext transfer protocol(HTTP) adaptive streaming(HAS) plays a key role in mobile video transmission. Considering the multi-segment and multi-rate features of HAS, this paper proposes a buffer-driven resource management(BDRM) method to enhance HAS quality of experience(QoE) in mobile network. Different from the traditional methods only focusing on base station side without considering the buffer, the proposed method takes both station and client sides into account and end user's buffer plays as the drive of whole schedule process. The proposed HAS QoE influencing factors are composed of initial delay, rebuffering and quality level. The BDRM method decomposes the HAS QoE maximization problem into client and base station sides separately to solve it in multicell and multi-user video playing scene in mobile network. In client side, the decision is made based on buffer probe and rate request algorithm by each user separately. It guarantees the less rebuffering events and decides which HAS segment rate to fetch. While, in the base station side, the schedule of wireless resource is made to maximize the quality level of all access clients and decides the final rate pulled from HAS server. The drive of buffer and twice rate request schemes make BDRMtake full advantage of HAS's multi-segment and multi-rate features. As to the simulation results, compared with proportional fair(PF), Max C/I and traditional HAS schedule(THS) methods, the proposed BDRM method decreases rebuffering percent to 1.96% from 11.1% with PF and from 7.01% with THS and increases the mean MOS of all users to 3.94 from 3.42 with PF method and from 2.15 with Max C/I method. It also guarantees a high fairness with 0.98 from the view of objective and subjective assessment metrics.
基金supported by the National Nature Science Foundation of China(NSFC 60622110,61471220,91538107,91638205)National Basic Research Project of China(973,2013CB329006),GY22016058
文摘With the popularity of smart handheld devices, mobile streaming video has multiplied the global network traffic in recent years. A huge concern of users' quality of experience(Qo E) has made rate adaptation methods very attractive. In this paper, we propose a two-phase rate adaptation strategy to improve users' real-time video Qo E. First, to measure and assess video Qo E, we provide a continuous Qo E prediction engine modeled by RNN recurrent neural network. Different from traditional Qo E models which consider the Qo E-aware factors separately or incompletely, our RNN-Qo E model accounts for three descriptive factors(video quality, rebuffering, and rate change) and reflects the impact of cognitive memory and recency. Besides, the video playing is separated into the initial startup phase and the steady playback phase, and we takes different optimization goals for each phase: the former aims at shortening the startup delay while the latter ameliorates the video quality and the rebufferings. Simulation results have shown that RNN-Qo E can follow the subjective Qo E quite well, and the proposed strategy can effectively reduce the occurrence of rebufferings caused by the mismatch between the requested video rates and the fluctuated throughput and attains standout performance on real-time Qo E compared with classical rate adaption methods.
基金This work was supported by National Natural Science Foundation of China(No.61772243)Jiangsu Provincial Key Research and Development Program(BE2018108)Six talent peak high level talent plan projects of Jiangsu Province(XYDXX-115).
文摘Driven by the continuous penetration of high data rate services and applications,a large amount of unregulated visible light spectrum is used for communication to fully meet the needs of 6th generation(6G)mobile technologies.Visible light communication(VLC)faces many challenges as a solution that complements existing radio frequency(RF)networks.This paper studies the optimal configuration of LEDs in indoor environments under the constraints of illumination and quality of experience(QoE).Based on the Voronoi tessellation(VT)and centroidal Voronoi tessellation(CVT)theory,combined with the Lloyd’s algorithm,we propose two approaches for optimizing LED deployments to meet the illumination and QoE requirements of all users.Focusing on(i)the minimization of the number of LEDs to be installed in order to meet illumination and average QoE constraints,and(ii)the maximization of the average QoE of users to be served with a fixed number of LEDs.Monte Carlo simulations are carried out for different user distribution compared with hexagonal,square and VT deployment.The simulation results illustrate that under the same conditions,the proposed deployment approach can provide less LEDs and achieve better QoE performance.
基金supported by the 863 Program(2014AA01A701)NSFC(61271187)+1 种基金the PAPD fundthe CICAEET fund
文摘The accuracy of the traditional assessment method of the quality of experience(Qo E) has been facing challenges with the growth of high-definition(HD) video streaming services.Image display-quality damage is the main factor that affects the Qo E in HD video services through UDP network transmission.In this paper,we introduce a novel objective factor known as image damage accumulation(IDA) to assess user's Qo E in HD video services.First,this paper quantitatively analyzed the effect on user quality of experience by IDA and established a mapping relationship between mean opinion scores and IDA.Furthermore,the probability of image damage caused by compression and transmission were analyzed.Based on this analysis,an objective Qo E assessment and prediction method for HD video stream service that evaluated the user experience according to IDA are proposed.The proposed method can achieve assessment and prediction accuracy on three distinct subjective tests.
基金The research leading to these results has received funding from The Research Council(TRC)of the Sultanate of Oman under the Block Funding Program with Agreement No.TRC/BFP/ASU/01/2019.
文摘Mobile broadband(MBB)networks are expanding rapidly to deliver higher data speeds.The fifth-generation cellular network promises enhanced-MBB with high-speed data rates,low power connectivity,and ultralow latency video streaming.However,existing cellular networks are unable to perform well due to high latency and low bandwidth,which degrades the performance of various applications.As a result,monitoring and evaluation of the performance of these network-supported services is critical.Mobile network providers optimize and monitor their network performance to ensure the highest quality of service to their end-users.This paper proposes a Bayesian model to estimate the minimum opinion score(MOS)of video streaming services for any particular cellular network.The MOS is the most commonly used metric to assess the quality of experience.The proposed Bayesian model consists of several input data,namely,round-trip time,stalling load,and bite rates.It was examined and evaluated using several test data sizes with various performance metrics.Simulation results show the proposed Bayesian network achieved higher accuracy overall test data sizes than a neural network.The proposed Bayesian network obtained a remarkable overall accuracy of 90.36%and outperformed the neural network.