Cavitation is one of the most important performance of centrifugal pumps. However, the current optimization works of centrifugal pump are mostly focusing on hydraulic efficiency only, which may result in poor cavitati...Cavitation is one of the most important performance of centrifugal pumps. However, the current optimization works of centrifugal pump are mostly focusing on hydraulic efficiency only, which may result in poor cavitation performance. Therefore, it is necessary to find an appropriate solution to improve cavitation performance with acceptable efficiency. In this paper, to improve the cavitation performance of a centrifugal pump with a vaned diffuser, the influence of impeller geometric parameters on the cavitation of the pump is investigated using the orthogonal design of experiment (DOE) based on computational fluid dynamics. The impeller inlet diameter D1, inlet incidence angle Aft, and blade wrap angle ~0 are selected as the main impeller geometric parameters and the orthogonal experiment of L9(3"3) is performed. Three-dimensional steady simulations for cavitation are conducted by using constant gas mass fraction model with second-order upwind, and the predicated cavitation performance is validated by laboratory experiment. The optimization results are obtained by the range analysis method to improve cavitation performance without obvious decreasing the efficiency of the centrifugal pump. The internal flow of the pump is analyzed in order to identify the flow behavior that can affect cavitation performance. The results show that D1 has the greatest influence on the pump cavitation and the final optimized impeller provides better flow distribution at blade leading edge. The final optimized impeller accomplishes better cavitation and hydraulic performance and the NPSHR decreases by 0.63m compared with the original one. The presented work supplies a feasible route in engineering practice to optimize a centrifugal pump impeller for better cavitation performance.展开更多
This paper describes the application of orthogonal test design coupled with non-linear regression analysis to optimize abrasive suspension jet (AS J) cutting process and construct its cutting model. Orthogonal test ...This paper describes the application of orthogonal test design coupled with non-linear regression analysis to optimize abrasive suspension jet (AS J) cutting process and construct its cutting model. Orthogonal test design is applied to cutting stainless steel. Through range analysis on experiment results, the optimal process conditions for the cutting depth and the kerr ratio of the bottom width to the top width can be determined. In addition, the analysis of ranges and variances are all employed to identify various factors: traverse rate, working pressure, nozzle diameter, standoff distance which denote the importance order of the cutting parameters affecting cutting depth and the kerf ratio of the bottom width to the top width. ~rthermore, non-linear regression analysis is used to establish the mathematical models of the cutting parameters based on the cutting depth and the kerr ratio. Finally, the verification experiments of cutting parameters' effect on cutting performance, which show that optimized cutting parameters and cutting model can significantly improve the prediction of the cutting ability and quality of ASJ.展开更多
This study firstly defines a set of arrangement rule for perforated holes of multi-hole orifice(MO), and then presents three critical geometrical parameters including total number of performated hole, equivalent diame...This study firstly defines a set of arrangement rule for perforated holes of multi-hole orifice(MO), and then presents three critical geometrical parameters including total number of performated hole, equivalent diameter ratio and distribution density of perforated holes, which are to quantify MO structure. This paper built the throttling test apparatus for nice test MO plates, which were designed according to orthogonal theory. The experiments were conducted to investigate the effect of three critical geometerical parameters on the pressure loss coefficient of test MOs. Results show that equivalent diameter ratio is the dominant prameter affecting MO throttling characterstic.展开更多
This article attempts to develop a simultaneous optimization procedure of several response variables from incomplete multi-response experiments. In incomplete multi-response experiments all the responses (p) are not r...This article attempts to develop a simultaneous optimization procedure of several response variables from incomplete multi-response experiments. In incomplete multi-response experiments all the responses (p) are not recorded from all the experimental units (n). Two situations of multi-response experiments considered are (i) on units all the responses are recorded while on units a subset of responses is recorded and (ii) on units all the responses (p) are recorded, on units a subset of responses is recorded and on units the remaining subset of responses is recorded. The procedure of estimation of parameters from linear multi-response models for incomplete multi-response experiments has been developed for both the situations. It has been shown that the parameter estimates are consistent and asymptotically unbiased. Using these parameter estimates, simultaneous optimization of incomplete multi-response experiments is attempted following the generalized distance criterion [1]. For the implementation of these procedures, SAS codes have been developed for both complete (k ≤ 5, p = 5) and incomplete (k ≤ 5, p1 = 2, 3 and p2 = 2, 3, where k is the number of factors) multi-response experiments. The procedure developed is illustrated with the help of a real data set.展开更多
An integer linear bilevel programming problem is firstly transformed into a binary linear bilevel programming problem, and then converted into a single-level binary implicit programming. An orthogonal genetic algorith...An integer linear bilevel programming problem is firstly transformed into a binary linear bilevel programming problem, and then converted into a single-level binary implicit programming. An orthogonal genetic algorithm is developed for solving the binary linear implicit programming problem based on the orthogonal design. The orthogonal design with the factor analysis, an experimental design method is applied to the genetic algorithm to make the algorithm more robust, statistical y sound and quickly convergent. A crossover operator formed by the orthogonal array and the factor analysis is presented. First, this crossover operator can generate a smal but representative sample of points as offspring. After al of the better genes of these offspring are selected, a best combination among these offspring is then generated. The simulation results show the effectiveness of the proposed algorithm.展开更多
The novel jet self-priming centrifugal pump,as important modern irrigation equipment,is widely used in large-scale irrigation,mine drainage and so on.In order to improve the profile streamline of blade,the inlet shape...The novel jet self-priming centrifugal pump,as important modern irrigation equipment,is widely used in large-scale irrigation,mine drainage and so on.In order to improve the profile streamline of blade,the inlet shape of impeller was designed as distorted and the outlet shape as cylindrical,which can not only improve the pump efficiency,but also shorten the self-priming time.Further,the novel jet self-priming system was proposed,by employing the jet nozzle and check valve to improve the velocity of self-priming.Meanwhile,nine different structure jet nozzles were designed based on the orthogonal design method,and the relevant self-priming experiments were performed on I level accuracy test bench in Jiangsu University.According to the greycorrelational analysis,the influence of the nozzle geometry parameters on the self-priming performance was obtained.The relationship between self-priming time and self-priming height was discussed.The test results showed that the hydraulic design of jet self-priming centrifugal pump was reasonable;all indicators met the Chinese national standard;the head reached 21.04 m and efficiency was 72.8%under the design flow condition.What is more,the self-priming performance was obviously improved by adjusting the geometrical parameters of nozzle.When the height of the self-priming process was 5.3 m,the self-priming time reached 62 s,which was much shorter than the national standard.Therefore,this research could provide reference for designing the structure of jet self-priming centrifugal pump.展开更多
The vibration problem during the operation of rice transplanters is the most common phenomenon.In order that the static and dynamic characteristics of the rice transplanter chassis can meet the requirements of more st...The vibration problem during the operation of rice transplanters is the most common phenomenon.In order that the static and dynamic characteristics of the rice transplanter chassis can meet the requirements of more stable operation,the research took the 2ZG-6DK rice transplanter as the research object to carry out a vibration reduction optimization study.In the research,the Pro/Engineer 5.0 software was first used to model the chassis of the rice transplanter.The constructed finite element model was revised by using the structural parameter revision method and the mixed penalty function method.The model was imported into ANSYS Workbench to solve the modal frequency and vibration shape of the rice transplanter chassis.Based on the MAC(modal assurance criterion)criterion,modal tests were carried out to verify the accuracy of the finite element theoretical analysis.Through the analysis of the characteristics of the external excitation frequency,the chassis is structurally optimized to avoid resonance caused by the natural frequency of the chassis falling within the road excitation frequency range.The final optimization results showed that the first four orders of modal frequencies of the chassis were adjusted to 32.083 Hz,33.751 Hz,42.517 Hz,and 50.362 Hz,respectively,in the case that the chassis mass was increased by 6.714 kg(8.8%).They all avoid the range of road excitation frequency(10-30 Hz)so that the rice transplanter can effectively avoid the resonance phenomenon during operation.This study can provide a reference for the design and optimization of the chassis structure of transplanter.展开更多
In this study,a moored array optimization tool(MAOT)was developed and applied to the South China Sea(SCS)with a focus on three-dimensional temperature and salinity observations.Application of the MAOT involves two ste...In this study,a moored array optimization tool(MAOT)was developed and applied to the South China Sea(SCS)with a focus on three-dimensional temperature and salinity observations.Application of the MAOT involves two steps:(1)deriving a set of optimal arrays that are independent of each other for different variables at different depths based on an empirical orthogonal function method,and(2)consolidating these arrays using a K-center clustering algorithm.Compared with the assumed initial array consisting of 17 mooring sites located on a 3°×3°horizontal grid,the consolidated array improved the observing ability for three-dimensional temperature and salinity in the SCS with optimization efficiencies of 19.03%and 21.38%,respectively.Experiments with an increased number of moored sites showed that the most cost-effective option is a total of 20 moorings,improving the observing ability with optimization efficiencies up to 26.54%for temperature and 27.25%for salinity.The design of an objective array relies on the ocean phenomenon of interest and its spatial and temporal scales.In this study,we focus on basin-scale variations in temperature and salinity in the SCS,and thus our consolidated array may not well resolve mesoscale processes.The MAOT can be extended to include other variables and multi-scale variability and can be applied to other regions.展开更多
In this paper we consider a parallel algorithm that detects the maximizer of unimodal function f(x) computable at every point on unbounded interval (0, ∞). The algorithm consists of two modes: scanning and detecting....In this paper we consider a parallel algorithm that detects the maximizer of unimodal function f(x) computable at every point on unbounded interval (0, ∞). The algorithm consists of two modes: scanning and detecting. Search diagrams are introduced as a way to describe parallel searching algorithms on unbounded intervals. Dynamic programming equations, combined with a series of liner programming problems, describe relations between results for every pair of successive evaluations of function f in parallel. Properties of optimal search strategies are derived from these equations. The worst-case complexity analysis shows that, if the maximizer is located on a priori unknown interval (n-1], then it can be detected after cp(n)=「2log「p/2」+1(n+1)」-1 parallel evaluations of f(x), where p is the number of processors.展开更多
基金Supported by National Science&Technology Pillar Program of China(Grant No.2014BAB08B01)National Natural Science Foundation of China(Grant No.51409123)+1 种基金Jiangsu Provincial Natural Science Foundation of China(Grant No.BK20140554)Training Project for Young Core Teacher of Jiangsu University,China
文摘Cavitation is one of the most important performance of centrifugal pumps. However, the current optimization works of centrifugal pump are mostly focusing on hydraulic efficiency only, which may result in poor cavitation performance. Therefore, it is necessary to find an appropriate solution to improve cavitation performance with acceptable efficiency. In this paper, to improve the cavitation performance of a centrifugal pump with a vaned diffuser, the influence of impeller geometric parameters on the cavitation of the pump is investigated using the orthogonal design of experiment (DOE) based on computational fluid dynamics. The impeller inlet diameter D1, inlet incidence angle Aft, and blade wrap angle ~0 are selected as the main impeller geometric parameters and the orthogonal experiment of L9(3"3) is performed. Three-dimensional steady simulations for cavitation are conducted by using constant gas mass fraction model with second-order upwind, and the predicated cavitation performance is validated by laboratory experiment. The optimization results are obtained by the range analysis method to improve cavitation performance without obvious decreasing the efficiency of the centrifugal pump. The internal flow of the pump is analyzed in order to identify the flow behavior that can affect cavitation performance. The results show that D1 has the greatest influence on the pump cavitation and the final optimized impeller provides better flow distribution at blade leading edge. The final optimized impeller accomplishes better cavitation and hydraulic performance and the NPSHR decreases by 0.63m compared with the original one. The presented work supplies a feasible route in engineering practice to optimize a centrifugal pump impeller for better cavitation performance.
基金supported by the Science and Technology Development Foundation of Shanghai Municipal Science and Technology Commission (Grant No.037252022)
文摘This paper describes the application of orthogonal test design coupled with non-linear regression analysis to optimize abrasive suspension jet (AS J) cutting process and construct its cutting model. Orthogonal test design is applied to cutting stainless steel. Through range analysis on experiment results, the optimal process conditions for the cutting depth and the kerr ratio of the bottom width to the top width can be determined. In addition, the analysis of ranges and variances are all employed to identify various factors: traverse rate, working pressure, nozzle diameter, standoff distance which denote the importance order of the cutting parameters affecting cutting depth and the kerf ratio of the bottom width to the top width. ~rthermore, non-linear regression analysis is used to establish the mathematical models of the cutting parameters based on the cutting depth and the kerr ratio. Finally, the verification experiments of cutting parameters' effect on cutting performance, which show that optimized cutting parameters and cutting model can significantly improve the prediction of the cutting ability and quality of ASJ.
基金Sponsored by National Natural Science Foundation of China (Grant No50578049)
文摘This study firstly defines a set of arrangement rule for perforated holes of multi-hole orifice(MO), and then presents three critical geometrical parameters including total number of performated hole, equivalent diameter ratio and distribution density of perforated holes, which are to quantify MO structure. This paper built the throttling test apparatus for nice test MO plates, which were designed according to orthogonal theory. The experiments were conducted to investigate the effect of three critical geometerical parameters on the pressure loss coefficient of test MOs. Results show that equivalent diameter ratio is the dominant prameter affecting MO throttling characterstic.
文摘This article attempts to develop a simultaneous optimization procedure of several response variables from incomplete multi-response experiments. In incomplete multi-response experiments all the responses (p) are not recorded from all the experimental units (n). Two situations of multi-response experiments considered are (i) on units all the responses are recorded while on units a subset of responses is recorded and (ii) on units all the responses (p) are recorded, on units a subset of responses is recorded and on units the remaining subset of responses is recorded. The procedure of estimation of parameters from linear multi-response models for incomplete multi-response experiments has been developed for both the situations. It has been shown that the parameter estimates are consistent and asymptotically unbiased. Using these parameter estimates, simultaneous optimization of incomplete multi-response experiments is attempted following the generalized distance criterion [1]. For the implementation of these procedures, SAS codes have been developed for both complete (k ≤ 5, p = 5) and incomplete (k ≤ 5, p1 = 2, 3 and p2 = 2, 3, where k is the number of factors) multi-response experiments. The procedure developed is illustrated with the help of a real data set.
基金supported by the Fundamental Research Funds for the Central Universities(K50511700004)the Natural Science Basic Research Plan in Shaanxi Province of China(2013JM1022)
文摘An integer linear bilevel programming problem is firstly transformed into a binary linear bilevel programming problem, and then converted into a single-level binary implicit programming. An orthogonal genetic algorithm is developed for solving the binary linear implicit programming problem based on the orthogonal design. The orthogonal design with the factor analysis, an experimental design method is applied to the genetic algorithm to make the algorithm more robust, statistical y sound and quickly convergent. A crossover operator formed by the orthogonal array and the factor analysis is presented. First, this crossover operator can generate a smal but representative sample of points as offspring. After al of the better genes of these offspring are selected, a best combination among these offspring is then generated. The simulation results show the effectiveness of the proposed algorithm.
基金the support from the National Natural Science Foundation of China (No. 51979138, No.51609105, No.51679111, No.51409127 and No.51579118)China Postdoctoral Science Foundation (Grant No.2016M601738 and 2018T110458)+7 种基金Natural Science Foundation of Jiangsu Province (BE2016163, BRA2017353 and No.BK20161472)Six Talents Peak Project of Jiangsu Province (No. JNHB-CXTD-005)Jiangsu Province University Natural Sciences Foundation (Grant No. 16KJB570002)Priority Academic Program Development of Jiangsu Higher Education Institutions (PAPD)National Key R&D Program Project (No.2017YFC0403703)Open Foundation of National Research Center of Pumps (Grant No.NRCP201604)Graduate Student Scientific Research Innovation Projects of Jiangsu Province (Grant No. SJKY19_2547)Chinese Scholarship Council (CSC) for the financial support
文摘The novel jet self-priming centrifugal pump,as important modern irrigation equipment,is widely used in large-scale irrigation,mine drainage and so on.In order to improve the profile streamline of blade,the inlet shape of impeller was designed as distorted and the outlet shape as cylindrical,which can not only improve the pump efficiency,but also shorten the self-priming time.Further,the novel jet self-priming system was proposed,by employing the jet nozzle and check valve to improve the velocity of self-priming.Meanwhile,nine different structure jet nozzles were designed based on the orthogonal design method,and the relevant self-priming experiments were performed on I level accuracy test bench in Jiangsu University.According to the greycorrelational analysis,the influence of the nozzle geometry parameters on the self-priming performance was obtained.The relationship between self-priming time and self-priming height was discussed.The test results showed that the hydraulic design of jet self-priming centrifugal pump was reasonable;all indicators met the Chinese national standard;the head reached 21.04 m and efficiency was 72.8%under the design flow condition.What is more,the self-priming performance was obviously improved by adjusting the geometrical parameters of nozzle.When the height of the self-priming process was 5.3 m,the self-priming time reached 62 s,which was much shorter than the national standard.Therefore,this research could provide reference for designing the structure of jet self-priming centrifugal pump.
基金financially supported by the National Key Research and Development Program of China Subproject(Grant No.2021YFD2000601)Innovation Scientists and Technicians Talent Projects of Henan Provincial Department of Education(Grant No.23IRTSTHN015,No.202300410124)。
文摘The vibration problem during the operation of rice transplanters is the most common phenomenon.In order that the static and dynamic characteristics of the rice transplanter chassis can meet the requirements of more stable operation,the research took the 2ZG-6DK rice transplanter as the research object to carry out a vibration reduction optimization study.In the research,the Pro/Engineer 5.0 software was first used to model the chassis of the rice transplanter.The constructed finite element model was revised by using the structural parameter revision method and the mixed penalty function method.The model was imported into ANSYS Workbench to solve the modal frequency and vibration shape of the rice transplanter chassis.Based on the MAC(modal assurance criterion)criterion,modal tests were carried out to verify the accuracy of the finite element theoretical analysis.Through the analysis of the characteristics of the external excitation frequency,the chassis is structurally optimized to avoid resonance caused by the natural frequency of the chassis falling within the road excitation frequency range.The final optimization results showed that the first four orders of modal frequencies of the chassis were adjusted to 32.083 Hz,33.751 Hz,42.517 Hz,and 50.362 Hz,respectively,in the case that the chassis mass was increased by 6.714 kg(8.8%).They all avoid the range of road excitation frequency(10-30 Hz)so that the rice transplanter can effectively avoid the resonance phenomenon during operation.This study can provide a reference for the design and optimization of the chassis structure of transplanter.
基金The National Key Research and Development Program of China under contract No.2019YFC1408400the National Natural Science Foundation of China under contract No.41876029.
文摘In this study,a moored array optimization tool(MAOT)was developed and applied to the South China Sea(SCS)with a focus on three-dimensional temperature and salinity observations.Application of the MAOT involves two steps:(1)deriving a set of optimal arrays that are independent of each other for different variables at different depths based on an empirical orthogonal function method,and(2)consolidating these arrays using a K-center clustering algorithm.Compared with the assumed initial array consisting of 17 mooring sites located on a 3°×3°horizontal grid,the consolidated array improved the observing ability for three-dimensional temperature and salinity in the SCS with optimization efficiencies of 19.03%and 21.38%,respectively.Experiments with an increased number of moored sites showed that the most cost-effective option is a total of 20 moorings,improving the observing ability with optimization efficiencies up to 26.54%for temperature and 27.25%for salinity.The design of an objective array relies on the ocean phenomenon of interest and its spatial and temporal scales.In this study,we focus on basin-scale variations in temperature and salinity in the SCS,and thus our consolidated array may not well resolve mesoscale processes.The MAOT can be extended to include other variables and multi-scale variability and can be applied to other regions.
文摘In this paper we consider a parallel algorithm that detects the maximizer of unimodal function f(x) computable at every point on unbounded interval (0, ∞). The algorithm consists of two modes: scanning and detecting. Search diagrams are introduced as a way to describe parallel searching algorithms on unbounded intervals. Dynamic programming equations, combined with a series of liner programming problems, describe relations between results for every pair of successive evaluations of function f in parallel. Properties of optimal search strategies are derived from these equations. The worst-case complexity analysis shows that, if the maximizer is located on a priori unknown interval (n-1], then it can be detected after cp(n)=「2log「p/2」+1(n+1)」-1 parallel evaluations of f(x), where p is the number of processors.