Background:Forests contribute to human wellbeing through the provision of important ecosystem services.Methods:In this study,we investigated how the perceived importance of ecosystem services may impact the overall ...Background:Forests contribute to human wellbeing through the provision of important ecosystem services.Methods:In this study,we investigated how the perceived importance of ecosystem services may impact the overall benefit provided by managed watersheds at the Hubbard Brook Experimental Forest over a 45-year period,using standardized measures of service capacity weighted by service importance weights derived from a survey of beneficiaries.Results:The capacity of watersheds to regulate water flow and quality was high in all watersheds throughout the study period,whereas cultural services such as scenic beauty declined after harvest.Impacts on greenhouse gas regulation depended on the efficiency with which harvested biomass was used.Surveys revealed that stakeholders placed high value on all ecosystem services,with regulating and cultural services seen as more important than provisioning services.When service metrics were weighted by survey responses and aggregated into a single measure,total service provision followed the same overall trend as greenhouse gas regulation.Where biomass use was less efficient in terms of greenhouse gas emissions,harvesting resulted in an overall "ecosystem service debt";where use was more efficient,this "ecosystem service debt" was reduced.Beneficiaries' educational backgrounds significantly affected overall assessment of service provision.Beneficiaries with college or university degrees incurred smaller "ecosystem service debts" and were less negatively affected by harvesting overall.Conclusions:This study highlights the importance of including empirical measures of beneficiary preference when attempting to quantify overall provision of ecosystem services to human beneficiaries over time.展开更多
A conceptual hydrological model that links the Xin'anjiang hydrological model and a physically based snow energy and mass balance model, described as the XINSNOBAL model, was developed in this study for simulating ra...A conceptual hydrological model that links the Xin'anjiang hydrological model and a physically based snow energy and mass balance model, described as the XINSNOBAL model, was developed in this study for simulating rain-on-snow events that commonly occur in the Pacific Northwest of the United States. The resultant model was applied to the Lookout Creek Watershed in the H. J. Andrews Experimental Forest in the western Cascade Mountains of Oregon, and its ability to simulate streamflow was evaluated. The simulation was conducted at 24-hour and one-hour time scales for the period of 1996 to 2005. The results indicated that runoffand peak discharge could be underestimated if snowpack accumulation and snowmelt under rain-on-snow conditions were not taken into account. The average deterministic coefficient of the hourly model in streamflow simulation in the calibration stage was 0.837, which was significantly improved over the value of 0.762 when the Xin'anjiang model was used alone. Good simulation performance of the XINSNOBAL model in the WS 10 catchment, using the calibrated parameter of the Lookout Creek Watershed for proxy-basin testing, demonstrates that transplanting model parameters between similar watersheds can orovide a useful tool for discharge forecastin~, in un^au^ed basins.展开更多
基金support from the USDA Forest Service's Northeastern States Research Cooperative(NSRC)in collaboration with the Hubbard Brook Research Foundationthe Cary Institute of Ecosystem Studies
文摘Background:Forests contribute to human wellbeing through the provision of important ecosystem services.Methods:In this study,we investigated how the perceived importance of ecosystem services may impact the overall benefit provided by managed watersheds at the Hubbard Brook Experimental Forest over a 45-year period,using standardized measures of service capacity weighted by service importance weights derived from a survey of beneficiaries.Results:The capacity of watersheds to regulate water flow and quality was high in all watersheds throughout the study period,whereas cultural services such as scenic beauty declined after harvest.Impacts on greenhouse gas regulation depended on the efficiency with which harvested biomass was used.Surveys revealed that stakeholders placed high value on all ecosystem services,with regulating and cultural services seen as more important than provisioning services.When service metrics were weighted by survey responses and aggregated into a single measure,total service provision followed the same overall trend as greenhouse gas regulation.Where biomass use was less efficient in terms of greenhouse gas emissions,harvesting resulted in an overall "ecosystem service debt";where use was more efficient,this "ecosystem service debt" was reduced.Beneficiaries' educational backgrounds significantly affected overall assessment of service provision.Beneficiaries with college or university degrees incurred smaller "ecosystem service debts" and were less negatively affected by harvesting overall.Conclusions:This study highlights the importance of including empirical measures of beneficiary preference when attempting to quantify overall provision of ecosystem services to human beneficiaries over time.
基金supported by the National Natural Science Foundation of China (Grants No. 40901015 and41001011)the Major Program of the National Natural Science Foundation of China (Grants No. 51190090 and 51190091)+3 种基金the Fundamental Research Funds for the Central Universities (Grants No. B1020062 andB1020072)the Ph. D. Programs Foundation of the Ministry of Education of China (Grant No.20090094120008)the Special Fund of State Key Laboratories of China (Grants No. 2009586412 and 2009585412)the Programme of Introducing Talents of Disciplines to Universities of the Ministry of Education and State Administration of the Foreign Experts Affairs of China (the 111 Project, Grant No.B08048)
文摘A conceptual hydrological model that links the Xin'anjiang hydrological model and a physically based snow energy and mass balance model, described as the XINSNOBAL model, was developed in this study for simulating rain-on-snow events that commonly occur in the Pacific Northwest of the United States. The resultant model was applied to the Lookout Creek Watershed in the H. J. Andrews Experimental Forest in the western Cascade Mountains of Oregon, and its ability to simulate streamflow was evaluated. The simulation was conducted at 24-hour and one-hour time scales for the period of 1996 to 2005. The results indicated that runoffand peak discharge could be underestimated if snowpack accumulation and snowmelt under rain-on-snow conditions were not taken into account. The average deterministic coefficient of the hourly model in streamflow simulation in the calibration stage was 0.837, which was significantly improved over the value of 0.762 when the Xin'anjiang model was used alone. Good simulation performance of the XINSNOBAL model in the WS 10 catchment, using the calibrated parameter of the Lookout Creek Watershed for proxy-basin testing, demonstrates that transplanting model parameters between similar watersheds can orovide a useful tool for discharge forecastin~, in un^au^ed basins.