The sugarcane field excitation,cutting forces and the engine excitation constitute complicated excitations acting on sugarcane harvesters.In this study,the sugarcane cutting mechanism under complicated excitations was...The sugarcane field excitation,cutting forces and the engine excitation constitute complicated excitations acting on sugarcane harvesters.In this study,the sugarcane cutting mechanism under complicated excitations was analyzed.The dynamics and the mathematical models of sugarcane harvesters were established and simulated.Based on theoretical analysis,sugarcane cutting experiments were done on a self-built sugarcane harvester test platform(SHTP),designed as single-factor and the orthogonal experiments.Effects of the sugarcane field excitation characterized by the sugarcane field excitation device(SFED)output frequency,the engine excitation characterized by the actuating engine output frequency,the cutter rotating speed,the sugarcane harvester travelling speed simulated through the sugarcane transporting speed of the SHTP and the cutter inclination angle on the cutting quality of sugarcane harvesters were studied.Effects of the axial cutter vibration on three-directional cutting forces and the sugarcane cutting quality(SCQ)as well as effects of three-directional cutting forces on the SCQ were further studied.It is shown that the sugarcane field excitation,the axial cutter vibration amplitude and frequency as well as the three-directional cutting forces have significantly negative monotonic correlated effects on the SCQ while the cutter rotating speed,the sugarcane harvester travelling speed and the cutter inclination angle have significantly positive monotonic correlated effects on the SCQ.Significance levels of effects on three-directional cutting forces and the SCQ form high to low are as follow,the axial cutter vibration,the sugarcane field excitation,the cutter rotating speed,the engine excitation,the cutter inclination angle,the sugarcane harvester travelling speed.The theoretical analysis results were verified through experiment and an optimal combination was obtained with the cutter rotating speed of 700 r/min,sugarcane harvester travelling speed of 0.6 m/s and cutter inclination angle of 8º.This study can provide a reference for setting cutting parameters of sugarcane harvesters with a good SCQ.展开更多
Through the Latour concept of philosophy of science of laboratory life,the life course of a(geo)ethnographer researcher is analyzed,in order to establish the emotional or more personal dimensions that do not usually a...Through the Latour concept of philosophy of science of laboratory life,the life course of a(geo)ethnographer researcher is analyzed,in order to establish the emotional or more personal dimensions that do not usually appear in research papers,but that have notable relevance in qualitative research.The text is structured in three large parts:A conceptual vision of the new experimental geography;the experimental geo-ethnography in old social,new social and place scenarios;and finally,the most personal and emotional dimension of the research.The first part establishes the geo-ethnographic experimental context and the assumptions in fieldwork,in addition to the geo-ethnographic reconciliation process.In the second part,the main qualitative research problems related to mobility,resistance and dynamics in place are established.Finally,in the third part the research perceptions,the personal experiences,and the emotional dimension of the research in remote rural areas are established.The laboratory life of a researcher,allows one to establish scalar conclusions and rigor in qualitative research.展开更多
Experimental and numerical simulations were undertaken to estimate the effects of imperfect conditions on stress waves in split Hopkinson pressure bar (SHPB) experiments. The photonic Doppler velocimetry (PDV) mea...Experimental and numerical simulations were undertaken to estimate the effects of imperfect conditions on stress waves in split Hopkinson pressure bar (SHPB) experiments. The photonic Doppler velocimetry (PDV) measurement results show that the rise and fall times of an incident wave increases with an increasing inclination angle; also, the fluctuations of the incident wave disappear gradually with the increase of inclination angle. The following characteristics for various defects in the SHPB were obtained by numerical simulation: (1) the influence of a curved bar was negligible; (2) misalignment modestly affects the fluctuation characteristics, and bending waves were generated at this condition; (3) inclination and indentation of the impact end- surface had a great impact on the incident waves, and both of them increase the rise time of the incident wave by increasing the degree of defects. In view of the results, misalignment, inclination, and indentation in SHPB experiments should be minimized.展开更多
Theoretical analysis and field monitoring show that lateral vibration has very important effect on casing wear in deep & ultra-deep well drilling. The wear mechanism of casing under impact-sliding work conditions ...Theoretical analysis and field monitoring show that lateral vibration has very important effect on casing wear in deep & ultra-deep well drilling. The wear mechanism of casing under impact-sliding work conditions has been investigated and many experiments have been completed with a newly developed full-scale casing wear test machine. Test results present that adhesion wear, contact fatigue, and grinding abrasion are the main wear mechanisms under impact-sliding test conditions. The friction coefficient and linear wear rate of the casing rise obviously with an increase in impact load. And the larger the impact load, the rougher the worn surface of the casing. The linear wear rate decreased slightly but the average friction coefficient increased slightly with an increase in impact frequency under an impact load of 2,500 N. Both the linear wear rate of the casing and the average friction coefficient increased substantially with an increase in impact frequency under an impact load of 4,000 N. Under lower impact load conditions, grinding abrasion and contact fatigue are the main mechanisms of casing wear; under higher impact load conditions, adhesion wear and contact fatigue are the main mechanisms of casing wear.展开更多
Experimental tests were conducted to evaluate the hydrodynamic performance of an L-type podded propulsor in straight-ahead motion and off-design conditions using an open-water measuring instrument developed by the aut...Experimental tests were conducted to evaluate the hydrodynamic performance of an L-type podded propulsor in straight-ahead motion and off-design conditions using an open-water measuring instrument developed by the authors for podded propulsors, a ship model towing tank, and under water particle image velocimetry (PIV) measurement systems. Under the three types of conditions, the main parameters of an L-type podded propulsor were measured, including the propeller thrust and torque, as well as the thrust, side force, and moment of the whole pod unit.In addition, the flow field on the section between the propeller and the strut was analyzed. Experimental results demonstrate that the dynamic azimuthing rate and direction and the turning direction affect the forces on the propeller and the whole pod unit. Forces are asymmetrically distributed between the left and right azimuthing directions because of the effect of propeller rotation. The findings of this study provide a foundation for further research on L-type podded propulsors.展开更多
The application of advanced high strength steel (AHSS) has an important significance in the development of the lightweight of automobile, but the parts made of AHSS usually have defects, such as fracture and large a...The application of advanced high strength steel (AHSS) has an important significance in the development of the lightweight of automobile, but the parts made of AHSS usually have defects, such as fracture and large amount of springback, etc. In this paper, a model of multi-pass roll form- ing and springback process of AHSS is established with finite element software ABAQUS. Then a roll forming experiment is performed, and simulation and experimental results have been compared and analyzed. The model is established under complex contact conditions, including self-contact condi- tion. The results shows that during the process of sheet bending, large Mises stresses appear at ben- ding corners. The smaller the bending radius is, the larger the Mises stress and strain are. Thick- ness of sheet metal changes exceeds a certain limit, the differently if the bending radius is different. When the bending radius change tendency of the sheet thickness turns from increase to decrease.展开更多
The strain and temperature sensing performance of fiber-optic Bragg gratings (FBGs) with soft polymeric coating, which can be used to sense internal strain in superconducting coils, are evaluated under variable cryo...The strain and temperature sensing performance of fiber-optic Bragg gratings (FBGs) with soft polymeric coating, which can be used to sense internal strain in superconducting coils, are evaluated under variable cryogenic field and magnetic field. The response to a temperature and strain change of coated-soft polymeric FBGs is tested by comparing with those of coated-metal FBGs. The results indicate that the coated-soft polymeric FBGs can freely detect temperature and thermal strain, their At variable magnetic field, the tested results indicate accuracy and repeatability are also discussed in detail. that the cross-coupling effects of FBGs with different matrixes are not negligible to measure electromagnetic strain during fast excitation. The present results are expected to be able to provide basis measurements on the strain of pulsed superconducting magnet/cable (cable- around-conduit conductors, cable-in-conduit conductors), independently or utilized together with other strain measurement methods.展开更多
In view of the importance of gas-liquid two-phase spiral flow and the few research reports at home and abroad,the gas-liquid two-phase spiral flow patterns have been researched in a horizontal pipe with different para...In view of the importance of gas-liquid two-phase spiral flow and the few research reports at home and abroad,the gas-liquid two-phase spiral flow patterns have been researched in a horizontal pipe with different parameters investigated by means of observation and a high-speed camera.Since the appearance of spiral flow makes the distribution of twophase flow more complicated,the flow patterns appearing in the experiments were divided into the Spiral Wavy Stratified Flow(SWS),the Spiral Bubble Flow(SB),the Spiral Slug Flow(SS),the Spiral Linear Flow(SL),the Spiral Axial Flow(SA),and the Spiral Dispersed Flow(SD) by the observations and with reference to the predecessors' research achievements.A flow pattern map has been drawn up.The influence of velocity,vane angle and vane area on flow pattern conversion boundary and pressure drop has been studied,with a solid foundation laid for the future research work.展开更多
The Ca(OH)_(2)/CaO thermochemical energy storage(TCES)system based on calcium looping has received extensive attention owing to its high energy storage density,prolonged energy storage time,and environmental friendlin...The Ca(OH)_(2)/CaO thermochemical energy storage(TCES)system based on calcium looping has received extensive attention owing to its high energy storage density,prolonged energy storage time,and environmental friendliness.The heat storage process of the Ca(OH)_(2)/CaO TCES system in a mixed heating reactor was evaluated in this study,by employing a combination of direct and indirect heating modes.The dehydration process was studied experimentally,and a numerical model was established and verified based on the experimental results.The dehydration behavior of 500 g of Ca(OH)_(2) powder was investigated in a fixed-bed reactor with mixed heating.The experimental and simulation results indicated that mixed heating causes combined centripetal and horizontal propulsion.Heat input is the main limiting factor in the heat storage process,because the radial advance of the reaction is hindered by the low thermal conductivity of the solid reactant particles.Heat transmission partitions were added to enhance the performance of the reactor.The performance of the modified reactor was compared with that of a conventional reactor.The radial heat transmission partitions in the modified reactor effectively enhance the energy storage rate and reduce the reaction time by 59.5%compared with the reactor without partitions.展开更多
The evaporator is the main part of a quick-freeze equipment. There are many factors influencing the heat transfer coefficient of an evaporator. The most important factors among them are the fin shape, tube diameter, d...The evaporator is the main part of a quick-freeze equipment. There are many factors influencing the heat transfer coefficient of an evaporator. The most important factors among them are the fin shape, tube diameter, distance of fin space, frost, and velocity of air flow etc. They mainly influence the thermal efficiency of an evaporator, and therefore its thermal efficiency has direct relationship with the whole efficiency of the quick freeze plant. Evaporators with different structural types have different heat transfer efficiency, in order to obtain high efficiency structure of evaporator, 8 evaporator models with different fin shape, tube diameter and tube arrangement are analyzed and compared. The calculation results show that the integral waved fins, equilateral-triangle arranged small diameter tubes and varying fin-spacing has the highest heat transfer coefficient. The experimental result also shows that the evaporator with this type of structure has better thermal efficiency. The experimental result is in good agreement with the calculation result, it can instruct engineering design for usual designer. A real quick-freeze equipment is designed and put into production. The result shows that, compared with traditional domestic quick-freeze equipments, this equipment decreases by 40% in size and by 20% in energy consumption.展开更多
The absence of effective therapies for castration-resistant prostate cancer(CRPC) establishes the need to develop novel therapeutic modality, such as targeted gene therapy, which is ideal for the treatment of CRPC. Bu...The absence of effective therapies for castration-resistant prostate cancer(CRPC) establishes the need to develop novel therapeutic modality, such as targeted gene therapy, which is ideal for the treatment of CRPC. But its application has been limited due to lack of favorable gene vector and the reduction of "bystander effect". Consequently, scientists all over the world focus their main experimental research on the following four aspects: targeted gene, vector, transfer means and comprehensive therapy. In this paper, we reviewed the latest advances of experimental research on targeted gene therapy for prostate cancer.展开更多
Polysocoharibe-peptide of Coriolus Versicolor (PSP) is a new anti-cancer immunomodulative drug. The present paper reports on the experimental research done with this drug. It was found that PSP had the ability to reco...Polysocoharibe-peptide of Coriolus Versicolor (PSP) is a new anti-cancer immunomodulative drug. The present paper reports on the experimental research done with this drug. It was found that PSP had the ability to recover hemolysin HC50, to increase the weight of the thymus, and increase the alexin of serum C3 and the IgG content of tumor bearing mice. FSP also significantly raised the pha-gocytic activity of macrophages in normal mice. PSP had a significant inhibitory effect on P38S and S180 cells. At the concentration of 1 mg/ml, PSP inhibited the proliferating activity of some human tumor call lines, such as SGC 7901, SPC, SLY and Mei. It had a direct toxic effect on SPC cells. PSP significantly inhibited the synthesis of nucleic acids of Ehrlich ascites carcinoma cells. In addition, PSP was antagonistic to the side effects of chemotherapy and radiotherapy.展开更多
?Fundamental experiments on lower hybrid current drive (LHCD) have been undertaken on HT-7 superconducting tokamak. The experiments on LHCD efficiency reveal its depen- deuce on plasma density and the toroidal magnet...?Fundamental experiments on lower hybrid current drive (LHCD) have been undertaken on HT-7 superconducting tokamak. The experiments on LHCD efficiency reveal its depen- deuce on plasma density and the toroidal magnetic field. Furthermore, the experiments on HT-7 successfully demonstrate the ability for LHCD to sustain long pulse tokamak discharges, such as discharges with full non-inductive current drive for several seconds. The experimental study to improve plasma confinements by LHCD suggests that the improvement should be due to the change o f current profile. It has also been demonstrated by the experiments that the lower hybrid wave may lead to an enhanced ionization of particles in the region where the wave is deposited.展开更多
The calculated and experimental research of sheet resistances of crystalline silicon solar cells by dry laser doping is investigated. The nonlinear numerical model on laser melting of crystalline silicon and liquid-ph...The calculated and experimental research of sheet resistances of crystalline silicon solar cells by dry laser doping is investigated. The nonlinear numerical model on laser melting of crystalline silicon and liquid-phase diffusion of phosphorus atoms by dry laser doping is analyzed by the finite difference method implemented in MATLAB. The melting period and melting depth of crystalline silicon as a function of laser energy density is achieved. The effective liquid-phase diffusion of phosphorus atoms in melting silicon by dry laser doping is confirmed by the rapid decrease of sheet resistances in experimental measurement. The plateau of sheet resistances is reached at around 15 Ω/. The calculated sheet resistances as a function of laser energy density is obtained and the calculated results are in good agreement with the corresponding experimental measurement. Due to the successful verification by comparison between experimental measurement and calculated results, the simulation results could be used to optimize the virtual laser doping parameters.展开更多
In order to study the propagation mechanism of continuous rotating detonation wave,the H2/air continuous rotating detonation engine ignited by tangentially installed H2/O2pre-detonation tube is studied experimentally ...In order to study the propagation mechanism of continuous rotating detonation wave,the H2/air continuous rotating detonation engine ignited by tangentially installed H2/O2pre-detonation tube is studied experimentally using a tilt slot injector structure.The experimental results show that the stable rotating detonation wave can be gained successfully with the equivalent ratio of 0.93.The propagation frequency and velocity of rotating detonation wave range from 5200 to 5500 Hz and from 1518.5 to 1606.1 m/s,respectively.Three propagation modes,such as rotation,reversal and bifurcation,of detonation wave are verified through the analysis of propagation mechanism of rotating detonation wave.展开更多
At present,rail transit is developing rapidly in the world,and this means new and changing requirements for the training of talents in railway engineering experiments.Given the current problems of limited laboratory/f...At present,rail transit is developing rapidly in the world,and this means new and changing requirements for the training of talents in railway engineering experiments.Given the current problems of limited laboratory/field instruments for railway engineering experimentsand the safety/administrative difficulties of going to the frontline of railway lines to teach railway engineering experiemnts in the field,the Department of Railway Engineering of Central South University tried to introduce virtual reality(VR)technology to teach students experiments in the field of railway engineering.Through the virtualized experimental methods,students can carry out railway engineering experiments such as;vehicle wheel pair off-axis experiments,track geometry and position detection,etc.by immersive means.It was observed that after performing virtual simulation experiments,students appeared conversant in subsequent field experiments.Thus,VR greatly improves the teaching efficiency of railway engineering experiments.展开更多
This paper introduces a new kind of armour block - hexagon multihole block on sloping breakwater. It has great characteristics such as good interlocking, strong resistance against waves and saving concrete. Through th...This paper introduces a new kind of armour block - hexagon multihole block on sloping breakwater. It has great characteristics such as good interlocking, strong resistance against waves and saving concrete. Through the hydraulic model test, the mechanism of stability of the block has been proved and the relations between stability and wave height, wave period, water depth, slope, laying method, porosity and cushion have been found. The effect of weight on steadiness have also been discovered. Finally, the method of design and some formulas are given.展开更多
To provide hexapod robots with strategies of locomotion planning, observation experiments were operated on a kind of ant with the use of high speed digital photography and computer assistant analysis. Through digitali...To provide hexapod robots with strategies of locomotion planning, observation experiments were operated on a kind of ant with the use of high speed digital photography and computer assistant analysis. Through digitalization of original analog video, locomotion characters of ants were obtained, the biomimetic foundation was laid for polynomial trajectory planning of multi-legged robots, which was deduced with mathematics method. In addition, five rules were concluded, which apply to hexapod robots marching locomotion planning. The first one is the fundamental strategy of multi-legged robots' leg trajectory planning. The second one helps to enhance the static and dynamic stability of multi-legged robots. The third one can improve the validity and feasibility of legs' falling points. The last two give criterions of multi-legged robots' toe trajectory figures and practical recommendatory constraints. These five rules give a good method for marching locomotion planning of multi-legged robots, and can be expended to turning planning and any other special locomotion.展开更多
AbstractBoth theoretical and experimental investigations are performed for a scheme for“ flutter taming”- semi-active control of structural nonlinear flutter. For atwo-dimensional nonlinear flutter system, a digital...AbstractBoth theoretical and experimental investigations are performed for a scheme for“ flutter taming”- semi-active control of structural nonlinear flutter. For atwo-dimensional nonlinear flutter system, a digital simulation method is used to verify theprinciple of semi-active flutter control and to study the response characteristics of theclosed loop flutter system. Simulation results show that by adjusting automatically thenonlinear stiffness parameter of the flutter system, the amphtude of the flutter responsecan be suppressed. In accordance with the theoretical analysis, a wind tunnel test model forsemi-active flutter control is designed. A micromotor-slide block system serves as theparameter control executive element with the monitoring of respf,are signal and the con-trolling of micromotor performed by a microcomputer. Wind tunnel tests confirm that thenonlinear flutter can be controlled effectively by this technique.展开更多
Tensile properties with different thermoforming conditions and deformation mechanism at thermoforming temperatures of automotive needlepunched carpets made up of three layers of different materials were reported.Inves...Tensile properties with different thermoforming conditions and deformation mechanism at thermoforming temperatures of automotive needlepunched carpets made up of three layers of different materials were reported.Investigations on the tensile properties were performed as a function of thermoforming temperature,extensile speed and fiber orientation based on an orthogonal experiment design.The experimental results show that the automotive carpets are rate-dependent anisotropic one and very sensitive to the forming temperature.The tensile properties are strongly depended on the forming temperature when compared with the extensile speed and the fiber orientation.Experiments only varying with the temperature were performed because of the dominative effect of the temperature.Different deformation performances were observed with different temperatures.Deformation mechanisms at the thermoforming temperatures were presented to explain the nonlinear trend of the ultimate elongation with the temperatures based on the combination of the experimental observations and the corresponding polymer theories.展开更多
基金supported by the Middle-aged and Young Teachers'Basic Scientific Research Ability Promotion Project of Guangxi Universities,China(Grant No.2023KY0701)Wuzhou University Research Foundation for Advanced Talents,China(Grant No.WZUQDJJ17195)+13 种基金Key University-level Scientific Research Project of Wuzhou University,China(Grant No.2020B003)Middle-aged and Young Teachers'Basic Scientific Research Ability Promotion Project of Guangxi Universities,China(Grant No.2024KY0697)Wuzhou University Research Foundation for Advanced Talents,China(Grant No.WZUQDJJ17179)Major Special Project of Guangxi Sugarcane Science and Technology in the 14th Five-year Plan,China(Grant No.2022AA01010)the general program of the National Natural Science Foundation Project,China(Grant No.32071916)a horizontal technical service project of the Zhenkang Professor Workstation,Yunnan,Chinathe Double First-class Discipline Construction Project:Mechanized sugarcane harvesting equipment development of Zhenkang,Yunnan,Chinathe first universitydirectlyunder-Education-Ministry-served innovative rural revitalization test project:the China-Agricultural-University-served innovative Bangdong Village revitalization test plan,mechanizedsugarcaneharvesting assistant rural revitalization in hilly areas,Zhenkang,Yunnan,Chinathe Portable Sugarcane Harvester Research and Development,China(Grant No.NK2022160504)the 2115 Talent Development Program of China Agricultural UniversityGuangxi Science and Technology Project,China(Grant No.Guike AA22117007)Guangxi Science and Technology Project,China(Grant No.Guike AA22117005)Guangxi Special Project of Science Technology Bases and Talents,China(Grant No.Guike AD23026033)the Opening Project of Guangxi Key Laboratory of Advanced Microwave Manufacturing Technology,China(Grant No.2024GKLAMMTKFKT001).
文摘The sugarcane field excitation,cutting forces and the engine excitation constitute complicated excitations acting on sugarcane harvesters.In this study,the sugarcane cutting mechanism under complicated excitations was analyzed.The dynamics and the mathematical models of sugarcane harvesters were established and simulated.Based on theoretical analysis,sugarcane cutting experiments were done on a self-built sugarcane harvester test platform(SHTP),designed as single-factor and the orthogonal experiments.Effects of the sugarcane field excitation characterized by the sugarcane field excitation device(SFED)output frequency,the engine excitation characterized by the actuating engine output frequency,the cutter rotating speed,the sugarcane harvester travelling speed simulated through the sugarcane transporting speed of the SHTP and the cutter inclination angle on the cutting quality of sugarcane harvesters were studied.Effects of the axial cutter vibration on three-directional cutting forces and the sugarcane cutting quality(SCQ)as well as effects of three-directional cutting forces on the SCQ were further studied.It is shown that the sugarcane field excitation,the axial cutter vibration amplitude and frequency as well as the three-directional cutting forces have significantly negative monotonic correlated effects on the SCQ while the cutter rotating speed,the sugarcane harvester travelling speed and the cutter inclination angle have significantly positive monotonic correlated effects on the SCQ.Significance levels of effects on three-directional cutting forces and the SCQ form high to low are as follow,the axial cutter vibration,the sugarcane field excitation,the cutter rotating speed,the engine excitation,the cutter inclination angle,the sugarcane harvester travelling speed.The theoretical analysis results were verified through experiment and an optimal combination was obtained with the cutter rotating speed of 700 r/min,sugarcane harvester travelling speed of 0.6 m/s and cutter inclination angle of 8º.This study can provide a reference for setting cutting parameters of sugarcane harvesters with a good SCQ.
文摘Through the Latour concept of philosophy of science of laboratory life,the life course of a(geo)ethnographer researcher is analyzed,in order to establish the emotional or more personal dimensions that do not usually appear in research papers,but that have notable relevance in qualitative research.The text is structured in three large parts:A conceptual vision of the new experimental geography;the experimental geo-ethnography in old social,new social and place scenarios;and finally,the most personal and emotional dimension of the research.The first part establishes the geo-ethnographic experimental context and the assumptions in fieldwork,in addition to the geo-ethnographic reconciliation process.In the second part,the main qualitative research problems related to mobility,resistance and dynamics in place are established.Finally,in the third part the research perceptions,the personal experiences,and the emotional dimension of the research in remote rural areas are established.The laboratory life of a researcher,allows one to establish scalar conclusions and rigor in qualitative research.
基金National Natural Science Foundation of China (Grants 11402277 and 11332011) for financial support
文摘Experimental and numerical simulations were undertaken to estimate the effects of imperfect conditions on stress waves in split Hopkinson pressure bar (SHPB) experiments. The photonic Doppler velocimetry (PDV) measurement results show that the rise and fall times of an incident wave increases with an increasing inclination angle; also, the fluctuations of the incident wave disappear gradually with the increase of inclination angle. The following characteristics for various defects in the SHPB were obtained by numerical simulation: (1) the influence of a curved bar was negligible; (2) misalignment modestly affects the fluctuation characteristics, and bending waves were generated at this condition; (3) inclination and indentation of the impact end- surface had a great impact on the incident waves, and both of them increase the rise time of the incident wave by increasing the degree of defects. In view of the results, misalignment, inclination, and indentation in SHPB experiments should be minimized.
基金supported by the National Natural Science Foundation of China (No.50475037)
文摘Theoretical analysis and field monitoring show that lateral vibration has very important effect on casing wear in deep & ultra-deep well drilling. The wear mechanism of casing under impact-sliding work conditions has been investigated and many experiments have been completed with a newly developed full-scale casing wear test machine. Test results present that adhesion wear, contact fatigue, and grinding abrasion are the main wear mechanisms under impact-sliding test conditions. The friction coefficient and linear wear rate of the casing rise obviously with an increase in impact load. And the larger the impact load, the rougher the worn surface of the casing. The linear wear rate decreased slightly but the average friction coefficient increased slightly with an increase in impact frequency under an impact load of 2,500 N. Both the linear wear rate of the casing and the average friction coefficient increased substantially with an increase in impact frequency under an impact load of 4,000 N. Under lower impact load conditions, grinding abrasion and contact fatigue are the main mechanisms of casing wear; under higher impact load conditions, adhesion wear and contact fatigue are the main mechanisms of casing wear.
基金Foundation item: Supported by the National Natural Science Foundation of China (Grant Nos. 41176074, 51379043 and 51409063)Acknowledgement This project was supported by the National Natural Science Foundation of China (Grant Nos. 41176074,51379043 and 51409063) and was conducted in response to the great support received from a basic research project entitled "Multihull Ship Technology Key Laboratory of Fundamental Science for National Defence", which was conducted at Harbin Engineering University. The authors would like to extend their sincere gratitude to their colleagues in the towing tank laboratory.
文摘Experimental tests were conducted to evaluate the hydrodynamic performance of an L-type podded propulsor in straight-ahead motion and off-design conditions using an open-water measuring instrument developed by the authors for podded propulsors, a ship model towing tank, and under water particle image velocimetry (PIV) measurement systems. Under the three types of conditions, the main parameters of an L-type podded propulsor were measured, including the propeller thrust and torque, as well as the thrust, side force, and moment of the whole pod unit.In addition, the flow field on the section between the propeller and the strut was analyzed. Experimental results demonstrate that the dynamic azimuthing rate and direction and the turning direction affect the forces on the propeller and the whole pod unit. Forces are asymmetrically distributed between the left and right azimuthing directions because of the effect of propeller rotation. The findings of this study provide a foundation for further research on L-type podded propulsors.
基金Supported by the National Natural Science Foundation of China(No.51205004,51475003)Beijing Natural Science Foundation(No.3152010)Beijing Education Committee Science and Technology Program(No.KM201510009004)
文摘The application of advanced high strength steel (AHSS) has an important significance in the development of the lightweight of automobile, but the parts made of AHSS usually have defects, such as fracture and large amount of springback, etc. In this paper, a model of multi-pass roll form- ing and springback process of AHSS is established with finite element software ABAQUS. Then a roll forming experiment is performed, and simulation and experimental results have been compared and analyzed. The model is established under complex contact conditions, including self-contact condi- tion. The results shows that during the process of sheet bending, large Mises stresses appear at ben- ding corners. The smaller the bending radius is, the larger the Mises stress and strain are. Thick- ness of sheet metal changes exceeds a certain limit, the differently if the bending radius is different. When the bending radius change tendency of the sheet thickness turns from increase to decrease.
基金Supported by the National Natural Science Foundation of China under Grant Nos 11302225,11121202 and 11327802the National Key Project of Magneto-Constrained Fusion Energy Development Program under Grant No 2013GB110002the Postdoctoral Science Foundation of China under Grant No 2014M560820
文摘The strain and temperature sensing performance of fiber-optic Bragg gratings (FBGs) with soft polymeric coating, which can be used to sense internal strain in superconducting coils, are evaluated under variable cryogenic field and magnetic field. The response to a temperature and strain change of coated-soft polymeric FBGs is tested by comparing with those of coated-metal FBGs. The results indicate that the coated-soft polymeric FBGs can freely detect temperature and thermal strain, their At variable magnetic field, the tested results indicate accuracy and repeatability are also discussed in detail. that the cross-coupling effects of FBGs with different matrixes are not negligible to measure electromagnetic strain during fast excitation. The present results are expected to be able to provide basis measurements on the strain of pulsed superconducting magnet/cable (cable- around-conduit conductors, cable-in-conduit conductors), independently or utilized together with other strain measurement methods.
基金supported by the National Natural Science Foundation of China (Grant number 51776015)
文摘In view of the importance of gas-liquid two-phase spiral flow and the few research reports at home and abroad,the gas-liquid two-phase spiral flow patterns have been researched in a horizontal pipe with different parameters investigated by means of observation and a high-speed camera.Since the appearance of spiral flow makes the distribution of twophase flow more complicated,the flow patterns appearing in the experiments were divided into the Spiral Wavy Stratified Flow(SWS),the Spiral Bubble Flow(SB),the Spiral Slug Flow(SS),the Spiral Linear Flow(SL),the Spiral Axial Flow(SA),and the Spiral Dispersed Flow(SD) by the observations and with reference to the predecessors' research achievements.A flow pattern map has been drawn up.The influence of velocity,vane angle and vane area on flow pattern conversion boundary and pressure drop has been studied,with a solid foundation laid for the future research work.
文摘The Ca(OH)_(2)/CaO thermochemical energy storage(TCES)system based on calcium looping has received extensive attention owing to its high energy storage density,prolonged energy storage time,and environmental friendliness.The heat storage process of the Ca(OH)_(2)/CaO TCES system in a mixed heating reactor was evaluated in this study,by employing a combination of direct and indirect heating modes.The dehydration process was studied experimentally,and a numerical model was established and verified based on the experimental results.The dehydration behavior of 500 g of Ca(OH)_(2) powder was investigated in a fixed-bed reactor with mixed heating.The experimental and simulation results indicated that mixed heating causes combined centripetal and horizontal propulsion.Heat input is the main limiting factor in the heat storage process,because the radial advance of the reaction is hindered by the low thermal conductivity of the solid reactant particles.Heat transmission partitions were added to enhance the performance of the reactor.The performance of the modified reactor was compared with that of a conventional reactor.The radial heat transmission partitions in the modified reactor effectively enhance the energy storage rate and reduce the reaction time by 59.5%compared with the reactor without partitions.
基金This project is supported by National Key Technologies R&D Programme,China (No.2001BA501A22).
文摘The evaporator is the main part of a quick-freeze equipment. There are many factors influencing the heat transfer coefficient of an evaporator. The most important factors among them are the fin shape, tube diameter, distance of fin space, frost, and velocity of air flow etc. They mainly influence the thermal efficiency of an evaporator, and therefore its thermal efficiency has direct relationship with the whole efficiency of the quick freeze plant. Evaporators with different structural types have different heat transfer efficiency, in order to obtain high efficiency structure of evaporator, 8 evaporator models with different fin shape, tube diameter and tube arrangement are analyzed and compared. The calculation results show that the integral waved fins, equilateral-triangle arranged small diameter tubes and varying fin-spacing has the highest heat transfer coefficient. The experimental result also shows that the evaporator with this type of structure has better thermal efficiency. The experimental result is in good agreement with the calculation result, it can instruct engineering design for usual designer. A real quick-freeze equipment is designed and put into production. The result shows that, compared with traditional domestic quick-freeze equipments, this equipment decreases by 40% in size and by 20% in energy consumption.
文摘The absence of effective therapies for castration-resistant prostate cancer(CRPC) establishes the need to develop novel therapeutic modality, such as targeted gene therapy, which is ideal for the treatment of CRPC. But its application has been limited due to lack of favorable gene vector and the reduction of "bystander effect". Consequently, scientists all over the world focus their main experimental research on the following four aspects: targeted gene, vector, transfer means and comprehensive therapy. In this paper, we reviewed the latest advances of experimental research on targeted gene therapy for prostate cancer.
文摘Polysocoharibe-peptide of Coriolus Versicolor (PSP) is a new anti-cancer immunomodulative drug. The present paper reports on the experimental research done with this drug. It was found that PSP had the ability to recover hemolysin HC50, to increase the weight of the thymus, and increase the alexin of serum C3 and the IgG content of tumor bearing mice. FSP also significantly raised the pha-gocytic activity of macrophages in normal mice. PSP had a significant inhibitory effect on P38S and S180 cells. At the concentration of 1 mg/ml, PSP inhibited the proliferating activity of some human tumor call lines, such as SGC 7901, SPC, SLY and Mei. It had a direct toxic effect on SPC cells. PSP significantly inhibited the synthesis of nucleic acids of Ehrlich ascites carcinoma cells. In addition, PSP was antagonistic to the side effects of chemotherapy and radiotherapy.
文摘?Fundamental experiments on lower hybrid current drive (LHCD) have been undertaken on HT-7 superconducting tokamak. The experiments on LHCD efficiency reveal its depen- deuce on plasma density and the toroidal magnetic field. Furthermore, the experiments on HT-7 successfully demonstrate the ability for LHCD to sustain long pulse tokamak discharges, such as discharges with full non-inductive current drive for several seconds. The experimental study to improve plasma confinements by LHCD suggests that the improvement should be due to the change o f current profile. It has also been demonstrated by the experiments that the lower hybrid wave may lead to an enhanced ionization of particles in the region where the wave is deposited.
基金Supported by the National Natural Science Foundation of China under Grant No 61306076
文摘The calculated and experimental research of sheet resistances of crystalline silicon solar cells by dry laser doping is investigated. The nonlinear numerical model on laser melting of crystalline silicon and liquid-phase diffusion of phosphorus atoms by dry laser doping is analyzed by the finite difference method implemented in MATLAB. The melting period and melting depth of crystalline silicon as a function of laser energy density is achieved. The effective liquid-phase diffusion of phosphorus atoms in melting silicon by dry laser doping is confirmed by the rapid decrease of sheet resistances in experimental measurement. The plateau of sheet resistances is reached at around 15 Ω/. The calculated sheet resistances as a function of laser energy density is obtained and the calculated results are in good agreement with the corresponding experimental measurement. Due to the successful verification by comparison between experimental measurement and calculated results, the simulation results could be used to optimize the virtual laser doping parameters.
基金sponsored by National Defence Researching Fund(9140c300202120c30)the Fundamental Research Fund for the central Universities(30920130112007)
文摘In order to study the propagation mechanism of continuous rotating detonation wave,the H2/air continuous rotating detonation engine ignited by tangentially installed H2/O2pre-detonation tube is studied experimentally using a tilt slot injector structure.The experimental results show that the stable rotating detonation wave can be gained successfully with the equivalent ratio of 0.93.The propagation frequency and velocity of rotating detonation wave range from 5200 to 5500 Hz and from 1518.5 to 1606.1 m/s,respectively.Three propagation modes,such as rotation,reversal and bifurcation,of detonation wave are verified through the analysis of propagation mechanism of rotating detonation wave.
基金Education and Teaching Reform Project of Central South University(2019jy097).
文摘At present,rail transit is developing rapidly in the world,and this means new and changing requirements for the training of talents in railway engineering experiments.Given the current problems of limited laboratory/field instruments for railway engineering experimentsand the safety/administrative difficulties of going to the frontline of railway lines to teach railway engineering experiemnts in the field,the Department of Railway Engineering of Central South University tried to introduce virtual reality(VR)technology to teach students experiments in the field of railway engineering.Through the virtualized experimental methods,students can carry out railway engineering experiments such as;vehicle wheel pair off-axis experiments,track geometry and position detection,etc.by immersive means.It was observed that after performing virtual simulation experiments,students appeared conversant in subsequent field experiments.Thus,VR greatly improves the teaching efficiency of railway engineering experiments.
文摘This paper introduces a new kind of armour block - hexagon multihole block on sloping breakwater. It has great characteristics such as good interlocking, strong resistance against waves and saving concrete. Through the hydraulic model test, the mechanism of stability of the block has been proved and the relations between stability and wave height, wave period, water depth, slope, laying method, porosity and cushion have been found. The effect of weight on steadiness have also been discovered. Finally, the method of design and some formulas are given.
基金Sponsored by the Ministerial Level Advanced Research Foundation(65822576)
文摘To provide hexapod robots with strategies of locomotion planning, observation experiments were operated on a kind of ant with the use of high speed digital photography and computer assistant analysis. Through digitalization of original analog video, locomotion characters of ants were obtained, the biomimetic foundation was laid for polynomial trajectory planning of multi-legged robots, which was deduced with mathematics method. In addition, five rules were concluded, which apply to hexapod robots marching locomotion planning. The first one is the fundamental strategy of multi-legged robots' leg trajectory planning. The second one helps to enhance the static and dynamic stability of multi-legged robots. The third one can improve the validity and feasibility of legs' falling points. The last two give criterions of multi-legged robots' toe trajectory figures and practical recommendatory constraints. These five rules give a good method for marching locomotion planning of multi-legged robots, and can be expended to turning planning and any other special locomotion.
文摘AbstractBoth theoretical and experimental investigations are performed for a scheme for“ flutter taming”- semi-active control of structural nonlinear flutter. For atwo-dimensional nonlinear flutter system, a digital simulation method is used to verify theprinciple of semi-active flutter control and to study the response characteristics of theclosed loop flutter system. Simulation results show that by adjusting automatically thenonlinear stiffness parameter of the flutter system, the amphtude of the flutter responsecan be suppressed. In accordance with the theoretical analysis, a wind tunnel test model forsemi-active flutter control is designed. A micromotor-slide block system serves as theparameter control executive element with the monitoring of respf,are signal and the con-trolling of micromotor performed by a microcomputer. Wind tunnel tests confirm that thenonlinear flutter can be controlled effectively by this technique.
基金Supported by National Natural Science Foundation of China(No.50305020)
文摘Tensile properties with different thermoforming conditions and deformation mechanism at thermoforming temperatures of automotive needlepunched carpets made up of three layers of different materials were reported.Investigations on the tensile properties were performed as a function of thermoforming temperature,extensile speed and fiber orientation based on an orthogonal experiment design.The experimental results show that the automotive carpets are rate-dependent anisotropic one and very sensitive to the forming temperature.The tensile properties are strongly depended on the forming temperature when compared with the extensile speed and the fiber orientation.Experiments only varying with the temperature were performed because of the dominative effect of the temperature.Different deformation performances were observed with different temperatures.Deformation mechanisms at the thermoforming temperatures were presented to explain the nonlinear trend of the ultimate elongation with the temperatures based on the combination of the experimental observations and the corresponding polymer theories.