Asphalt mixture is a highly heterogeneous material, which is one of the reasons for high measurements uncertainty when subjected to tests. The results of such tests are often unreliable, which may lead to making bad p...Asphalt mixture is a highly heterogeneous material, which is one of the reasons for high measurements uncertainty when subjected to tests. The results of such tests are often unreliable, which may lead to making bad professional judgments. They can be avoided by carrying out reliable analyses of measurement uncertainty adequate for the research methods used and conducted before the actual research is done. This paper presents the calculation of measurements uncertainty using as an example--the determination of the stiffness modulus of the asphalt mixture, which, in turn, was accomplished using the indirect tension method. The paper also shows the employment of the basic methods of statistical analysis, such as testing two mean values and conformity tests. Essential concepts in measurements uncertainty have been compiled and the determination of the stiffness module parameters are discussed. It has been demonstrated that the biggest source of error in the stiffness modulus measuring process is the displacement measure. The aim of the research was to find the measurement uncertainty for stiffness modulus by an indirect tensile test and the presentation of examples of the used statistical methods.展开更多
文摘Asphalt mixture is a highly heterogeneous material, which is one of the reasons for high measurements uncertainty when subjected to tests. The results of such tests are often unreliable, which may lead to making bad professional judgments. They can be avoided by carrying out reliable analyses of measurement uncertainty adequate for the research methods used and conducted before the actual research is done. This paper presents the calculation of measurements uncertainty using as an example--the determination of the stiffness modulus of the asphalt mixture, which, in turn, was accomplished using the indirect tension method. The paper also shows the employment of the basic methods of statistical analysis, such as testing two mean values and conformity tests. Essential concepts in measurements uncertainty have been compiled and the determination of the stiffness module parameters are discussed. It has been demonstrated that the biggest source of error in the stiffness modulus measuring process is the displacement measure. The aim of the research was to find the measurement uncertainty for stiffness modulus by an indirect tensile test and the presentation of examples of the used statistical methods.