In this paper, we conduct research on the construction mode of mechanical and electrical integration of intelligent control system based on the multi-agent technique. The development of the modem science and technolog...In this paper, we conduct research on the construction mode of mechanical and electrical integration of intelligent control system based on the multi-agent technique. The development of the modem science and technology has greatly promoted the cross of different subjects and infiltration, caused the technological transformation and revolution in the field of engineering. In the field of mechanical engineering, because of rapid development of microelectronics technology and computer technology to the mechanical industry and its mechanical and electrical integration, which is formed by the penetration of the technology of mechanical industry structure, product, organization, function and structure, mode of the production and management system, great changes have taken place in industrial production by the mechanical electrification "ushered in the development of" mechatronics "as the characteristics of the stage. Our research combines the multi-agent technique to propose the new paradigm for mechanical and electrical integration which is innovative.展开更多
The vigorous expansion of renewable energy as a substitute for fossil energy is the predominant route of action to achieve worldwide carbon neutrality. However, clean energy supplies in multi-energy building districts...The vigorous expansion of renewable energy as a substitute for fossil energy is the predominant route of action to achieve worldwide carbon neutrality. However, clean energy supplies in multi-energy building districts are still at the preliminary stages for energy paradigm transitions. In particular, technologies and methodologies for large-scale renewable energy integrations are still not sufficiently sophisticated, in terms of intelligent control management. Artificial intelligent (AI) techniques powered renewable energy systems can learn from bioinspired lessons and provide power systems with intelligence. However, there are few in-depth dissections and deliberations on the roles of AI techniques for large-scale integrations of renewable energy and decarbonisation in multi-energy systems. This study summarizes the commonly used AI-related approaches and discusses their functional advantages when being applied in various renewable energy sectors, as well as their functional contribution to optimizing the operational control modalities of renewable energy and improving the overall operational effectiveness. This study also presents practical applications of various AI techniques in large-scale renewable energy integration systems, and analyzes their effectiveness through theoretical explanations and diverse case studies. In addition, this study introduces limitations and challenges associated with the large-scale renewable energy integrations for carbon neutrality transition using relevant AI techniques, and proposes further promising research perspectives and recommendations. This comprehensive review ignites advanced AI techniques for large-scale renewable integrations and provides valuable informational instructions and guidelines to different stakeholders (e.g., engineers, designers and scientists) for carbon neutrality transition.展开更多
S-surface control has proven to be an effective means for motion control of underwater autonomous vehicles(AUV).However there are still problems maintaining steady precision of course due to the constant need to adjus...S-surface control has proven to be an effective means for motion control of underwater autonomous vehicles(AUV).However there are still problems maintaining steady precision of course due to the constant need to adjust parameters,especially where there are disturbing currents.Thus an intelligent integral was introduced to improve precision.An expert S-surface control was developed to tune the parameters on-line,based on the expert system,it provides S-surface control according to practical experience and control knowledge.To prevent control output over-compensation,a fuzzy neural network was included to adjust the production rules to the knowledge base.Experiments were conducted on an AUV simulation platform,and the results show that the expert S-surface controller performs better than an S-surface controller in environments with currents,producing good steady precision of course in a robust way.展开更多
文摘In this paper, we conduct research on the construction mode of mechanical and electrical integration of intelligent control system based on the multi-agent technique. The development of the modem science and technology has greatly promoted the cross of different subjects and infiltration, caused the technological transformation and revolution in the field of engineering. In the field of mechanical engineering, because of rapid development of microelectronics technology and computer technology to the mechanical industry and its mechanical and electrical integration, which is formed by the penetration of the technology of mechanical industry structure, product, organization, function and structure, mode of the production and management system, great changes have taken place in industrial production by the mechanical electrification "ushered in the development of" mechatronics "as the characteristics of the stage. Our research combines the multi-agent technique to propose the new paradigm for mechanical and electrical integration which is innovative.
文摘The vigorous expansion of renewable energy as a substitute for fossil energy is the predominant route of action to achieve worldwide carbon neutrality. However, clean energy supplies in multi-energy building districts are still at the preliminary stages for energy paradigm transitions. In particular, technologies and methodologies for large-scale renewable energy integrations are still not sufficiently sophisticated, in terms of intelligent control management. Artificial intelligent (AI) techniques powered renewable energy systems can learn from bioinspired lessons and provide power systems with intelligence. However, there are few in-depth dissections and deliberations on the roles of AI techniques for large-scale integrations of renewable energy and decarbonisation in multi-energy systems. This study summarizes the commonly used AI-related approaches and discusses their functional advantages when being applied in various renewable energy sectors, as well as their functional contribution to optimizing the operational control modalities of renewable energy and improving the overall operational effectiveness. This study also presents practical applications of various AI techniques in large-scale renewable energy integration systems, and analyzes their effectiveness through theoretical explanations and diverse case studies. In addition, this study introduces limitations and challenges associated with the large-scale renewable energy integrations for carbon neutrality transition using relevant AI techniques, and proposes further promising research perspectives and recommendations. This comprehensive review ignites advanced AI techniques for large-scale renewable integrations and provides valuable informational instructions and guidelines to different stakeholders (e.g., engineers, designers and scientists) for carbon neutrality transition.
基金Supported by the National Natural Science Foundation of China under Grant No.50579007
文摘S-surface control has proven to be an effective means for motion control of underwater autonomous vehicles(AUV).However there are still problems maintaining steady precision of course due to the constant need to adjust parameters,especially where there are disturbing currents.Thus an intelligent integral was introduced to improve precision.An expert S-surface control was developed to tune the parameters on-line,based on the expert system,it provides S-surface control according to practical experience and control knowledge.To prevent control output over-compensation,a fuzzy neural network was included to adjust the production rules to the knowledge base.Experiments were conducted on an AUV simulation platform,and the results show that the expert S-surface controller performs better than an S-surface controller in environments with currents,producing good steady precision of course in a robust way.