We deal with the Wick-type stochastic fractional Korteweg de–Vries(KdV) equation with conformable derivatives.With the aid of the Exp-function method, white noise theory, and Hermite transform, we produce a novel set...We deal with the Wick-type stochastic fractional Korteweg de–Vries(KdV) equation with conformable derivatives.With the aid of the Exp-function method, white noise theory, and Hermite transform, we produce a novel set of exact soliton and periodic wave solutions to the fractional KdV equation with conformable derivatives. With the help of inverse Hermite transform, we get stochastic soliton and periodic wave solutions of the Wick-type stochastic fractional KdV equation with conformable derivatives. Eventually, by an application example, we show how the stochastic solutions can be given as Brownian motion functional solutions.展开更多
This paper applies the exp-function method, which was originally proposed to find new exact travelling wave solutions of nonlinear evolution equations, to the Riccati equation, and some exact solutions of this equatio...This paper applies the exp-function method, which was originally proposed to find new exact travelling wave solutions of nonlinear evolution equations, to the Riccati equation, and some exact solutions of this equation are obtained. Based on the Riccati equation and its exact solutions, we find new and more general variable separation solutions with two arbitrary functions of (1+1)-dimensional coupled integrable dispersionless system. As some special examples, some new solutions can degenerate into variable separation solutions reported in open literatures. By choosing suitably two independent variables p(x) and q(t) in our solutions, the annihilation phenomena of the fiat-basin soliton, arch-basin soliton, and fiat-top soliton are discussed.展开更多
基金the Deanship of Scientific Research at King Khalid University for funding their work through Research Group Program under grant number(G.P.1/160/40)。
文摘We deal with the Wick-type stochastic fractional Korteweg de–Vries(KdV) equation with conformable derivatives.With the aid of the Exp-function method, white noise theory, and Hermite transform, we produce a novel set of exact soliton and periodic wave solutions to the fractional KdV equation with conformable derivatives. With the help of inverse Hermite transform, we get stochastic soliton and periodic wave solutions of the Wick-type stochastic fractional KdV equation with conformable derivatives. Eventually, by an application example, we show how the stochastic solutions can be given as Brownian motion functional solutions.
基金Supported by the National Natural Science Foundation of China under Grant No.11005092the Program for Innovative Research Team of Young Teachers under Grant No.2009RC01Scientific Research,and Developed Fund under Grant No.2009FK42 of Zhejiang A&F University
文摘This paper applies the exp-function method, which was originally proposed to find new exact travelling wave solutions of nonlinear evolution equations, to the Riccati equation, and some exact solutions of this equation are obtained. Based on the Riccati equation and its exact solutions, we find new and more general variable separation solutions with two arbitrary functions of (1+1)-dimensional coupled integrable dispersionless system. As some special examples, some new solutions can degenerate into variable separation solutions reported in open literatures. By choosing suitably two independent variables p(x) and q(t) in our solutions, the annihilation phenomena of the fiat-basin soliton, arch-basin soliton, and fiat-top soliton are discussed.