Methods which calculate state feedback matrices explicitly for uncontrollable systems are considered in this paper. They are based on the well-known method of the entire eigenstructure assignment. The use of a particu...Methods which calculate state feedback matrices explicitly for uncontrollable systems are considered in this paper. They are based on the well-known method of the entire eigenstructure assignment. The use of a particular similarity transformation exposes certain intrinsic properties of the closed loop w-eigenvectors together with their companion z-vectors. The methods are extended further to deal with multi-input control systems. Existence of eigenvectors solution is established. A differentiation property of the z-vectors is proved for the repeated eigenvalues assignment case. Two examples are worked out in detail.展开更多
The paper introduces effective and straightforward algorithms of both explicit and implicit model-following designs with state derivative measurement feedback in novel reciprocal state space form (RSS) to handle state...The paper introduces effective and straightforward algorithms of both explicit and implicit model-following designs with state derivative measurement feedback in novel reciprocal state space form (RSS) to handle state derivative related performance output and state related performance output design cases. Applying proposed algorithms, no integrators are required. Consequently, implementation is simple and low-cost. Simulation has also been carried out to verify the proposed algorithms. Since acceleration can only be modeled as state derivative in state space form and micro-accelerometer which is the state derivative sensor is getting more and more attentions in many microelectromechanical and nanoelectromechanical systems (MEMS/NEMS) applications, the proposed algorithms are suitable for MEMS/NEMS systems installed with micro-accelerometers.展开更多
为解决命名数据网络中的拥塞控制问题,提出一种博弈拥塞控制算法。将路由器为数据流分配带宽问题构建成单主多从的Stackelberg博弈模型,建立路由器和数据流的效用函数,证明数据流非合作动态博弈纳什均衡解的存在性,运用分布式迭代方法,...为解决命名数据网络中的拥塞控制问题,提出一种博弈拥塞控制算法。将路由器为数据流分配带宽问题构建成单主多从的Stackelberg博弈模型,建立路由器和数据流的效用函数,证明数据流非合作动态博弈纳什均衡解的存在性,运用分布式迭代方法,获得数据流最优带宽需求量和路由器最优价格策略,通过数据包将数据流最优带宽需求量对应的速率反馈给下游路由器和请求端。基于ndnSIM平台对该算法与ICP(interest control protocol)和HR-ICP(hop-by-hop and receiver-driven interest control protocol)算法进行仿真试验,结果表明该算法能有效提升瓶颈链路利用率并保证较低的丢包率。展开更多
文摘Methods which calculate state feedback matrices explicitly for uncontrollable systems are considered in this paper. They are based on the well-known method of the entire eigenstructure assignment. The use of a particular similarity transformation exposes certain intrinsic properties of the closed loop w-eigenvectors together with their companion z-vectors. The methods are extended further to deal with multi-input control systems. Existence of eigenvectors solution is established. A differentiation property of the z-vectors is proved for the repeated eigenvalues assignment case. Two examples are worked out in detail.
文摘The paper introduces effective and straightforward algorithms of both explicit and implicit model-following designs with state derivative measurement feedback in novel reciprocal state space form (RSS) to handle state derivative related performance output and state related performance output design cases. Applying proposed algorithms, no integrators are required. Consequently, implementation is simple and low-cost. Simulation has also been carried out to verify the proposed algorithms. Since acceleration can only be modeled as state derivative in state space form and micro-accelerometer which is the state derivative sensor is getting more and more attentions in many microelectromechanical and nanoelectromechanical systems (MEMS/NEMS) applications, the proposed algorithms are suitable for MEMS/NEMS systems installed with micro-accelerometers.
文摘为解决命名数据网络中的拥塞控制问题,提出一种博弈拥塞控制算法。将路由器为数据流分配带宽问题构建成单主多从的Stackelberg博弈模型,建立路由器和数据流的效用函数,证明数据流非合作动态博弈纳什均衡解的存在性,运用分布式迭代方法,获得数据流最优带宽需求量和路由器最优价格策略,通过数据包将数据流最优带宽需求量对应的速率反馈给下游路由器和请求端。基于ndnSIM平台对该算法与ICP(interest control protocol)和HR-ICP(hop-by-hop and receiver-driven interest control protocol)算法进行仿真试验,结果表明该算法能有效提升瓶颈链路利用率并保证较低的丢包率。