Purpose–The purpose of this paper is to simplify the Explicit Nonlinear Model Predictive Controller(ENMPC)by linearizing the trajectory with Quantum-behaved Pigeon-Inspired Optimization(QPIO).Design/methodology/appro...Purpose–The purpose of this paper is to simplify the Explicit Nonlinear Model Predictive Controller(ENMPC)by linearizing the trajectory with Quantum-behaved Pigeon-Inspired Optimization(QPIO).Design/methodology/approach–The paper deduces the nonlinear model of the quadrotor and uses the ENMPC to track the trajectory.Since the ENMPC has high demand for the state equation,the trajectory needed to be differentiated many times.When the trajectory is complicate or discontinuous,QPIO is proposed to linearize the trajectory.Then the linearized trajectory will be used in the ENMPC.Findings–Applying the QPIO algorithm allows the unequal distance sample points to be acquired to linearize the trajectory.Comparing with the equidistant linear interpolation,the linear interpolation error will be smaller.Practical implications–Small-sized quadrotors were adopted in this research to simplify the model.The model is supposed to be accurate and differentiable to meet the requirements of ENMPC.Originality/value–Traditionally,the quadrotor model was usually linearized in the research.In this paper,the quadrotormodel waskept nonlinear and the trajectorywill be linearizedinstead.Unequaldistance sample points were utilized to linearize the trajectory.In this way,the authors can get a smaller interpolation error.This method can also be applied to discrete systems to construct the interpolation for trajectory tracking.展开更多
文摘Purpose–The purpose of this paper is to simplify the Explicit Nonlinear Model Predictive Controller(ENMPC)by linearizing the trajectory with Quantum-behaved Pigeon-Inspired Optimization(QPIO).Design/methodology/approach–The paper deduces the nonlinear model of the quadrotor and uses the ENMPC to track the trajectory.Since the ENMPC has high demand for the state equation,the trajectory needed to be differentiated many times.When the trajectory is complicate or discontinuous,QPIO is proposed to linearize the trajectory.Then the linearized trajectory will be used in the ENMPC.Findings–Applying the QPIO algorithm allows the unequal distance sample points to be acquired to linearize the trajectory.Comparing with the equidistant linear interpolation,the linear interpolation error will be smaller.Practical implications–Small-sized quadrotors were adopted in this research to simplify the model.The model is supposed to be accurate and differentiable to meet the requirements of ENMPC.Originality/value–Traditionally,the quadrotor model was usually linearized in the research.In this paper,the quadrotormodel waskept nonlinear and the trajectorywill be linearizedinstead.Unequaldistance sample points were utilized to linearize the trajectory.In this way,the authors can get a smaller interpolation error.This method can also be applied to discrete systems to construct the interpolation for trajectory tracking.