An explicit finite element-finite difference method for analyzing the effects of two-dimensional visco-elastic localtopography on earthquake ground motion is prOPosed in this paper. In the method, at first, the finite...An explicit finite element-finite difference method for analyzing the effects of two-dimensional visco-elastic localtopography on earthquake ground motion is prOPosed in this paper. In the method, at first, the finite elementdiscrete model is formed by using the artificial boundary and finite element method, and the dynamic equationsof local nodes in the discrete model are obtained according to the theory of the special finite element method similar to the finite difference method, and then the explicit step-by-step integration formulas are presented by usingthe explicit difference method for solving the visco-elastic dynamic equation and Generalized Multi-transmittingBoundary. The method has the advantages of saving computing time and computer memory space, and it is suitable for any case of topography and has high computing accuracy and good computing stability.展开更多
A fast explicit finite difference method (FEFDM),derived from the differential equations of one-dimensional steady pipe flow,was presented for calculation of wellhead injection pressure.Recalculation with a traditiona...A fast explicit finite difference method (FEFDM),derived from the differential equations of one-dimensional steady pipe flow,was presented for calculation of wellhead injection pressure.Recalculation with a traditional numerical method of the same equations corroborates well the reliability and rate of FEFDM.Moreover,a flow rate estimate method was developed for the project whose injection rate has not been clearly determined.A wellhead pressure regime determined by this method was successfully applied to the trial injection operations in Shihezi formation of Shenhua CCS Project,which is a good practice verification of FEFDM.At last,this method was used to evaluate the effect of friction and acceleration terms on the flow equation on the wellhead pressure.The result shows that for deep wellbore,the friction term can be omitted when flow rate is low and in a wide range of velocity the acceleration term can always be deleted.It is also shown that with flow rate increasing,the friction term can no longer be neglected.展开更多
A new general optimal principle of designing explicit finite difference method was obtained. Several applied cases were put forward to explain the uses of the principle. The validity of the principal was tested by a n...A new general optimal principle of designing explicit finite difference method was obtained. Several applied cases were put forward to explain the uses of the principle. The validity of the principal was tested by a numeric example.展开更多
The finite difference method such as alternating group iterative methods is useful in numerical method for evolutionary equations and this is the standard approach taken in this paper. Alternating group explicit (AGE)...The finite difference method such as alternating group iterative methods is useful in numerical method for evolutionary equations and this is the standard approach taken in this paper. Alternating group explicit (AGE) iterative methods for one-dimensional convection diffusion equations problems are given. The stability and convergence are analyzed by the linear method. Numerical results of the model problem are taken. Known test problems have been studied to demonstrate the accuracy of the method. Numerical results show that the behavior of the method with emphasis on treatment of boundary conditions is valuable.展开更多
By using the Feynman-Kac formula and combining with Itˆo-Taylor expansion and finite difference approximation,we first develop an explicit third order onestep method for solving decoupled forward backward stochastic d...By using the Feynman-Kac formula and combining with Itˆo-Taylor expansion and finite difference approximation,we first develop an explicit third order onestep method for solving decoupled forward backward stochastic differential equations.Then based on the third order one,an explicit fourth order method is further proposed.Several numerical tests are also presented to illustrate the stability and high order accuracy of the proposed methods.展开更多
文摘An explicit finite element-finite difference method for analyzing the effects of two-dimensional visco-elastic localtopography on earthquake ground motion is prOPosed in this paper. In the method, at first, the finite elementdiscrete model is formed by using the artificial boundary and finite element method, and the dynamic equationsof local nodes in the discrete model are obtained according to the theory of the special finite element method similar to the finite difference method, and then the explicit step-by-step integration formulas are presented by usingthe explicit difference method for solving the visco-elastic dynamic equation and Generalized Multi-transmittingBoundary. The method has the advantages of saving computing time and computer memory space, and it is suitable for any case of topography and has high computing accuracy and good computing stability.
基金Project(Z110803)supported by the State Key Laboratory of Geomechanics and Geotechnical Engineering,ChinaProject(2008AA062303)supported by the National High Technology Research and Development Program of China
文摘A fast explicit finite difference method (FEFDM),derived from the differential equations of one-dimensional steady pipe flow,was presented for calculation of wellhead injection pressure.Recalculation with a traditional numerical method of the same equations corroborates well the reliability and rate of FEFDM.Moreover,a flow rate estimate method was developed for the project whose injection rate has not been clearly determined.A wellhead pressure regime determined by this method was successfully applied to the trial injection operations in Shihezi formation of Shenhua CCS Project,which is a good practice verification of FEFDM.At last,this method was used to evaluate the effect of friction and acceleration terms on the flow equation on the wellhead pressure.The result shows that for deep wellbore,the friction term can be omitted when flow rate is low and in a wide range of velocity the acceleration term can always be deleted.It is also shown that with flow rate increasing,the friction term can no longer be neglected.
文摘A new general optimal principle of designing explicit finite difference method was obtained. Several applied cases were put forward to explain the uses of the principle. The validity of the principal was tested by a numeric example.
文摘The finite difference method such as alternating group iterative methods is useful in numerical method for evolutionary equations and this is the standard approach taken in this paper. Alternating group explicit (AGE) iterative methods for one-dimensional convection diffusion equations problems are given. The stability and convergence are analyzed by the linear method. Numerical results of the model problem are taken. Known test problems have been studied to demonstrate the accuracy of the method. Numerical results show that the behavior of the method with emphasis on treatment of boundary conditions is valuable.
基金supported by the NSF of China(No.12001539)the NSF of Hunan Province(No.2020JJ5647)China Postdoctoral Science Foundation(No.2019TQ0073).
文摘By using the Feynman-Kac formula and combining with Itˆo-Taylor expansion and finite difference approximation,we first develop an explicit third order onestep method for solving decoupled forward backward stochastic differential equations.Then based on the third order one,an explicit fourth order method is further proposed.Several numerical tests are also presented to illustrate the stability and high order accuracy of the proposed methods.