期刊文献+
共找到6篇文章
< 1 >
每页显示 20 50 100
On the Exponential Diophantine Equation x^2 + (3a^2 -1)~m = (4a^2 -1)~n 被引量:1
1
作者 胡永忠 《Journal of Mathematical Research and Exposition》 CSCD 北大核心 2007年第2期236-240,共5页
We apply a new, deep theorem of Bilu, Hanrot & Voutier and some fine results on the representation of the solutions of quadratic Diophantine equations to solve completely the exponential Diophantine equation x^2+(3... We apply a new, deep theorem of Bilu, Hanrot & Voutier and some fine results on the representation of the solutions of quadratic Diophantine equations to solve completely the exponential Diophantine equation x^2+(3a^2-1)^m = (4a^2-1)^n when 3a^2-1 is a prime or a prime power. 展开更多
关键词 exponential diophantine equations Lucas sequences primitive divisors Kronecker symbol.
下载PDF
A Conjecture Concerning the Pure Exponential Diophantine Equation a^x+b^y=c^z 被引量:9
2
作者 Mao Hua LE 《Acta Mathematica Sinica,English Series》 SCIE CSCD 2005年第4期943-948,共6页
Let a, b, c, r be fixed positive integers such that a^2 + b^2 = c^r, min(a, b, c, r) 〉 1 and 2 r. In this paper we prove that if a ≡ 2 (mod 4), b ≡ 3 (mod 4), c 〉 3.10^37 and r 〉 7200, then the equation a... Let a, b, c, r be fixed positive integers such that a^2 + b^2 = c^r, min(a, b, c, r) 〉 1 and 2 r. In this paper we prove that if a ≡ 2 (mod 4), b ≡ 3 (mod 4), c 〉 3.10^37 and r 〉 7200, then the equation a^x + b^y = c^z only has the solution (x, y, z) = (2, 2, r). 展开更多
关键词 Pure exponential diophantine equation Number of solutions Completely determine
原文传递
A Kind of Diophantine Equations in Finite Simple Groups 被引量:3
3
作者 曹珍富 《Northeastern Mathematical Journal》 CSCD 2000年第4期391-397,共7页
In this paper, we prove that if p, q are distinct primes, (p,q)≡(1,7) (mod 12) and Legendres symbol pq=1 , then the equation 1+p a=2 bq c+2 dp eq f has only solutions of the form (a,b,c,d,e,f)=... In this paper, we prove that if p, q are distinct primes, (p,q)≡(1,7) (mod 12) and Legendres symbol pq=1 , then the equation 1+p a=2 bq c+2 dp eq f has only solutions of the form (a,b,c,d,e,f)=(t,0,0,0,t,0), where t is a non negative integer. We also give all solutions of a kind of generalized Ramanujan Nagell equations by using the theories of imaginary quadratic field and Pells equation. 展开更多
关键词 exponential diophantine equation generalized Ramanujan Nagell equation finite simple group difference set
下载PDF
Non-Negative Integer Solutions of Two Diophantine Equations 2x + 9y = z2 and 5x + 9y = z2
4
作者 Md. Al-Amin Khan Abdur Rashid Md. Sharif Uddin 《Journal of Applied Mathematics and Physics》 2016年第4期762-765,共4页
In this paper, we study two Diophantine equations of the type p<sup>x</sup> + 9<sup>y</sup> = z<sup>2</sup> , where p is a prime number. We find that the equation 2<sup>x</... In this paper, we study two Diophantine equations of the type p<sup>x</sup> + 9<sup>y</sup> = z<sup>2</sup> , where p is a prime number. We find that the equation 2<sup>x</sup> + 9<sup>y</sup> = z<sup>2</sup> has exactly two solutions (x, y, z) in non-negative integer i.e., {(3, 0, 3),(4, 1, 5)} but 5<sup>x</sup> + 9<sup>y</sup> = z<sup>2</sup> has no non-negative integer solution. 展开更多
关键词 exponential diophantine equation Integer Solutions
下载PDF
On the Diophantine System a^2+b^2=c^3 and a^x+b^y=c^z for b is an Odd Prime 被引量:3
5
作者 Mao Hua LE 《Acta Mathematica Sinica,English Series》 SCIE CSCD 2008年第6期917-924,共8页
Let a, b and c be fixed coprime positive integers. In this paper we prove that if a^2 + b^2 = c^3 and b is an odd prime, then the equation a^x + b^y = c^z has only the positive integer solution (x, y, z) = (2,2,3).
关键词 exponential diophantine equation positive integer solution generalized Fermat conjecture
原文传递
On the Terai-Jésmanowicz Conjecture 被引量:1
6
作者 Jian Ye XIA Ping Zhi YUAN 《Acta Mathematica Sinica,English Series》 SCIE CSCD 2008年第12期2061-2064,共4页
In this paper, we prove that if a, b and c are pairwise coprime positive integers such that a^2+b^2=c^r,a〉b,a≡3 (mod4),b≡2 (mod4) and c-1 is not a square, thena a^x+b^y=c^z has only the positive integer solut... In this paper, we prove that if a, b and c are pairwise coprime positive integers such that a^2+b^2=c^r,a〉b,a≡3 (mod4),b≡2 (mod4) and c-1 is not a square, thena a^x+b^y=c^z has only the positive integer solution (x, y, z) = (2, 2, r). Let m and r be positive integers with 2|m and 2 r, define the integers Ur, Vr by (m +√-1)^r=Vr+Ur√-1. If a = |Ur|,b=|Vr|,c = m^2+1 with m ≡ 2 (mod 4),a ≡ 3 (mod 4), and if r 〈 m/√1.5log3(m^2+1)-1, then a^x + b^y = c^z has only the positive integer solution (x,y, z) = (2, 2, r). The argument here is elementary. 展开更多
关键词 exponential diophantine equations Terai-Jesmanowicz conjecture Lucas sequences
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部