The concept of neutrosophic statistics is applied to propose two monitoring schemes which are an improvement of the neutrosophic exponentially weighted moving average(NEWMA)chart.In this study,two control charts are d...The concept of neutrosophic statistics is applied to propose two monitoring schemes which are an improvement of the neutrosophic exponentially weighted moving average(NEWMA)chart.In this study,two control charts are designed under the uncertain environment or neutrosophic statistical interval system,when all observations are undermined,imprecise or fuzzy.These are termed neutrosophic double and triple exponentially weighted moving average(NDEWMA and NTEWMA)control charts.For the proficiency of the proposed chart,Monte Carlo simulations are used to calculate the run-length characteristics(such as average run length(ARL),standard deviation of the run length(SDRL),percentiles(P_(25),P_(50),P_(75)))of the proposed charts.The structures of the proposed control charts are more effective in detecting small shifts while these are comparable with the other existing charts in detecting moderate and large shifts.The simulation study and real-life implementations of the proposed charts show that the proposed NDEWMA and NTEWMA charts perform better in monitoring the process of road traffic crashes and electric engineering data as compared to the existing control charts.Therefore,the proposed charts will be helpful in minimizing the road accident and minimizing the defective products.Furthermore,the proposed charts are more acceptable and actual to apply in uncertain environment.展开更多
主元分析(principal component analysis,PCA)是一种有效的数据分析方法,在故障诊断与状态监测方面已得到广泛应用.多元指数加权移动平均–主元分析(multivariate exponentially weighted moving average principal component analysis,...主元分析(principal component analysis,PCA)是一种有效的数据分析方法,在故障诊断与状态监测方面已得到广泛应用.多元指数加权移动平均–主元分析(multivariate exponentially weighted moving average principal component analysis,MEWMA–PCA)方法用于解决PCA不能有效检出微小故障的问题.本文深入研究了MEWMA–PCA中EWMA影响主元分析进行故障检测的机制,导出了MEWMA–PCA可检出微小故障的原因.本文确定了MEWMA–PCA中遗忘因子λ、单传感器故障幅值和迟延时间三者的关系,并进行了数值仿真和火电厂磨煤机组运行状态的仿真实验.实验结果验证了MEWMA–PCA中EWMA提高PCA的监测性能的机制,并给出了根据系统实际要求来选取合适的遗忘因子值,从而在规定的时间内检出微小故障的实例.展开更多
基金This work was funded by the Deanship of Scientific Research(DSR),King Abdulaziz University,JeddahThe authors,therefore,gratefully acknowledge the DSR technical and financial support.
文摘The concept of neutrosophic statistics is applied to propose two monitoring schemes which are an improvement of the neutrosophic exponentially weighted moving average(NEWMA)chart.In this study,two control charts are designed under the uncertain environment or neutrosophic statistical interval system,when all observations are undermined,imprecise or fuzzy.These are termed neutrosophic double and triple exponentially weighted moving average(NDEWMA and NTEWMA)control charts.For the proficiency of the proposed chart,Monte Carlo simulations are used to calculate the run-length characteristics(such as average run length(ARL),standard deviation of the run length(SDRL),percentiles(P_(25),P_(50),P_(75)))of the proposed charts.The structures of the proposed control charts are more effective in detecting small shifts while these are comparable with the other existing charts in detecting moderate and large shifts.The simulation study and real-life implementations of the proposed charts show that the proposed NDEWMA and NTEWMA charts perform better in monitoring the process of road traffic crashes and electric engineering data as compared to the existing control charts.Therefore,the proposed charts will be helpful in minimizing the road accident and minimizing the defective products.Furthermore,the proposed charts are more acceptable and actual to apply in uncertain environment.
文摘主元分析(principal component analysis,PCA)是一种有效的数据分析方法,在故障诊断与状态监测方面已得到广泛应用.多元指数加权移动平均–主元分析(multivariate exponentially weighted moving average principal component analysis,MEWMA–PCA)方法用于解决PCA不能有效检出微小故障的问题.本文深入研究了MEWMA–PCA中EWMA影响主元分析进行故障检测的机制,导出了MEWMA–PCA可检出微小故障的原因.本文确定了MEWMA–PCA中遗忘因子λ、单传感器故障幅值和迟延时间三者的关系,并进行了数值仿真和火电厂磨煤机组运行状态的仿真实验.实验结果验证了MEWMA–PCA中EWMA提高PCA的监测性能的机制,并给出了根据系统实际要求来选取合适的遗忘因子值,从而在规定的时间内检出微小故障的实例.