Objective To explore the effects of exposure to aluminum (AI) on long-term potentiation (LTP) and AMPA receptor subunits in rats in vivo. Methods Different dosages of aluminum-maltolate complex [Al(mal)3] were g...Objective To explore the effects of exposure to aluminum (AI) on long-term potentiation (LTP) and AMPA receptor subunits in rats in vivo. Methods Different dosages of aluminum-maltolate complex [Al(mal)3] were given to rats via acute intracerebroventricular (i.c.v.) injection and subchronic intraperitoneal (i.p.) injection. Following AI exposure, the hippocampal LTP were recorded by field potentiation technique in vivo and the expression of AMPAR subunit proteins (GluR1 and GluR2) in both total and membrane-enriched extracts from the CA1 area of rat hippocampus were detected by Western blot assay. Results Acute AI treatment produced dose-dependent suppression of LTP in the rat hippocampus and dose-dependent decreases of GluRz and GluR2 in membrane extracts; however, no similar changes were found in the total cell extracts, which suggests decreased trafficking of AMPA receptor subunits from intracellular pools to synaptic sites in the hippocampus. The dose-dependent suppressive effects on LTP and the expression of AMPA receptor subunits both in the membrane and in total extracts were found after subchronic AI treatment, indicating a decrease in AMPA receptor subunit trafficking from intracellular pools to synaptic sites and an additional reduction in the expression of the subunits. Conclusion Al(mal)3 obviously and dose-dependently suppressed LTP in the rat hippocampal CA1 region in vivo, and this suppression may be related to both trafficking and decreases in the expression of AMPA receptor subunit proteins. However, the mechanisms underlying these observations need further investigation.展开更多
Objective To explore the changes in spatial learning performance and long-term potentiation (LTP) which is recognized as a component of the cellular basis of learning and memory in normal and lead-exposed rats after...Objective To explore the changes in spatial learning performance and long-term potentiation (LTP) which is recognized as a component of the cellular basis of learning and memory in normal and lead-exposed rats after administration of melatonin (MT) for two months. Methods Experiment was performed in adult male Wistar rats (12 controls, 12 exposed to melatonin treatment, 10 exposed to lead and 10 exposed to lead and melatonin treatment). The lead-exposed rats received 0.2% lead acetate solution from their birth day while the control rats drank tap water. Melatonin (3 mg/kg) or vehicle was administered to the control and lead-exposed rats from the time of their weaning by gastric gavage each day for 60 days, depending on their groups. At the age of 81-90 days, all the animals were subjected to Morris water maze test and then used for extracellular recording of LTP in the dentate gyrus (DG) area of the hippocampus in vivo. Results Low dose of melatonin given from weaning for two months impaired LTP in the DG area of hippocampus and induced learning and memory deficit in the control rats. When melatonin was administered over a prolonged period to the lead-exposed rats, it exacerbated LTP impairment, learning and memory deficit induced by lead. Conclusion Melatonin is not suitable for normal and lead-exposed children.展开更多
Experiments were performed on 64 Sprague-Dawley rats under ure-thane anesthesia. Extracellular recording method was used to investigate the effect of aluminum (Al)microinjected into CA3 on long-term potentiation (LTP)...Experiments were performed on 64 Sprague-Dawley rats under ure-thane anesthesia. Extracellular recording method was used to investigate the effect of aluminum (Al)microinjected into CA3 on long-term potentiation (LTP) in this area. The relationship between the inhibitory effect of Al and L-arginine-NO pathway was also studied. Microinjection of Al (0. 5 mol/L, 1 μl ) into CA3 could block the induction of LTP in CA3. Microinjection of Al (0. 5 mol/L, 1 μl) into CA3 after LTP was induced could also decrease the amplitude of population spike (PS). The inhibitory effect of Al on LTP in CA3 could be enhanced by preinjection of NG-nitro-L-arginine (0. 3 mol/L, 1 μl). Preinjection of L-arginine (0. 3 mol/L, 1 μl) into CA3 could antagonize the inhibitory effect of Al on LTP. These results suggest that Al could block the induction of LTP and decrease the amplitude of PS potentiated in CA3. The effect of Al might be antagonized by L-arginine-NO pathway.展开更多
Osthole, an effective monomer in Chinese medicinal herbs, can cross the blood-brain barrier and protect against brain injury, with few toxic effects. In this study, a rat model of Alzheimer's disease was established ...Osthole, an effective monomer in Chinese medicinal herbs, can cross the blood-brain barrier and protect against brain injury, with few toxic effects. In this study, a rat model of Alzheimer's disease was established after intracerebroventricular injection of β-amyloid peptide (25-35). Subsequently the rats were intraperitoneally treated with osthole (12.5 or 25.0 mg/kg) for 14 successive days. Results showed that osthole treatment significantly improved cognitive impairment and protected hippocampal neurons of AIzheimer's disease rats. Also, osthole treatment alleviated suppressed long-term potentiation in the hippocampus of Alzheimer's disease rats. In these osthole-treated Alzheimer's disease rats, the level of glutamate decreased, but there was no significant change in y-amino-butyric acid. These experimental findings suggest that osthole can improve learning and memory impairment, and increase synaptic plasticity in Alzheimer's disease rats. These effects of osthole may be because of its regulation of central glutamate and y-amino-butyric acid levels.展开更多
A hydroethanolic extract (20% V/V) from Herba Sideritis scardica has been recognized to positively influence cognition. The present investigation aimed at the question if this extract would be able to modify intra-hip...A hydroethanolic extract (20% V/V) from Herba Sideritis scardica has been recognized to positively influence cognition. The present investigation aimed at the question if this extract would be able to modify intra-hippocampal communication after oral administration of 100 mg/kg daily for one week. The glutamatergic synapse between Schaffer Collaterals and pyramidal cells can be tested by electric stimulation using single pulses or theta burst stimulation. The resulting population spike is modulated by compounds acting at the central nervous system or other preparations directly or as ex vivo approach. In this case the effect of the special extract was tested in vitro the next day after repetitive in vitro administration. Conventional recording technique in the in vitro hippocampus slice revealed an increase of the population spike in the presence of single stimuli and theta burst stimuli resulting in increased long-term potentiation. This effect was tried to modulate by several glutamate receptor antagonists, among them compounds targeting at the ionic NMDA receptor (CGS19755), AMPA receptor (NBQX), Kainate receptor (UBP301) and targeting at three metabotropic glutamate receptors (mGluR I (YM298198), mGluRII ((RS)-APICA)) and mGluRIII (MSOP). Only NBQX was able to prevent the action of the Sideritis scardica extract. Since the AMPA receptor has been related to cognition in several reports in the literature, it is concluded from this result that the positive action of Sideritis scardica extract on brain function involves a modulation of AMPA receptor dependent neurotransmission.展开更多
Activation of b-adrenoceptors in area CA1 of the hippocampus facilitates in vitro long-term potentiation (LTP) in this region. However, it is unclear if in vivo LTP in area CA1 and hippocampus-dependent learning are s...Activation of b-adrenoceptors in area CA1 of the hippocampus facilitates in vitro long-term potentiation (LTP) in this region. However, it is unclear if in vivo LTP in area CA1 and hippocampus-dependent learning are subjected to b-adrenergic regulation. To address this ques-tion, we investigated the effects of the b-adrenergic agonist L-isoproterenol or antagonist DL-propranolol on in vivo LTP of area CA1 and the spatial learning in Morris water maze. In the presence of L-isoproterenol (through local infusion into area CA1), the theta-pulse stimulation with the parameter of 10 Hz, 150 pulses/train, 1 train, a frequency weakly modifying synaptic strength, induced a robust LTP, and this effect was blocked when DL-propranolol was co-administered. By contrast, the theta-pulse stimulation with the parameter of 5 Hz, 150 pulses/train, 3 trains, a fre-quency strongly modifying synaptic strength, induced a significantly smaller LTP when DL-propranolol was administered into area CA1. Accordingly, DL-propranolol impaired the spatial learning in the water maze when infused into area CA1 20 min pretraining. Compared with control rats, the DL-propranolol-treated rats showed significantly slower learning in the water maze and subsequently exhibited poor memory retention at 24-h test. These results suggest that b-adrenoceptors in area CA1 are involved in regulating in vivo synaptic plasticity of this area and are important for spatial learning.展开更多
After intraperitoneal injection of 20 mg/kg lead acetate, rats received 8 weeks of treadmill exercise (15-22 m/min, 25-64 minutes) and/or treadmill exercise at 1.6 km/h until exhaustion. The markers related to neuro...After intraperitoneal injection of 20 mg/kg lead acetate, rats received 8 weeks of treadmill exercise (15-22 m/min, 25-64 minutes) and/or treadmill exercise at 1.6 km/h until exhaustion. The markers related to neurotoxicity were measured by enzyme-linked immunosorbent assay method. 8 weeks of treadmill exercise significantly increased brain-derived neurotrophic factor level in the hippocampus (P = 0.04) and plasma level of total antioxidant capacity of rats exposed to lead acetate (P 〈 0.001), and significantly decreased plasma level of malondialdehyde (P 〈 0.001). Acute exercise only decreased the hippocampal malondialdehyde level (P = 0.09) and increased brain-derived neurotrophic factor level in the hippocampus (P = 0.66). Acute exercise also enhanced the total antioxidant capacity in rats exposed to lead acetate, insignificantly (P = 0.99), These findings suggest that chronic treadmill exercise can significantly decrease neurotoxicity and alleviate oxidative stress in rats exposed to lead acetate. However, acute endurance exercise was not associated with these beneficial effects.展开更多
Objective: To investigate the effects of Zhengtian Pills(ZTP) on long term potentiation(LTP) both in Schaffer-CA1 in vitro and perforant path-dentate gyrus(PP-DG) synapses in vivo.Methods: Sprague-Dawley rats were ran...Objective: To investigate the effects of Zhengtian Pills(ZTP) on long term potentiation(LTP) both in Schaffer-CA1 in vitro and perforant path-dentate gyrus(PP-DG) synapses in vivo.Methods: Sprague-Dawley rats were randomly divided into five groups: control, positive control, migraine model, low-, and high-dose ZTP groups. Glyceryl trinitrate(10 mg/kg) was injected subcutaneously to make migraine rat model. Flunarizine(0.9 mg/kg) was set as positive control. Extracellular recording technique in vivo was used to record the effects of ZTP on LTP of PP-DG pathway in anesthetized rats; Using extracellular recording technique in vitro, the effects of ZTP on LTP of Schaffer Collateral-CA1 pathway in rat hippocampal slices were investigated.Results: Compared to the control group, ZTP(1.08 g/kg) significantly enhanced population spike amplitude in PP-DG pathway; Glyceryl trinitrate(10 mg/kg) significantly reduced population spike amplitude in PP-DG pathway; Neither ZTP(0.54 g/kg) nor Flunarizine(0.9 mg/kg) had significant effects on LTP in PP-DG pathway. Compared to the model group, ZTP(1.08 g/kg), ZTP(0.54 g/kg), and flunarizine(0.9 mg/kg) significantly enhanced population spike amplitude in PP-DG pathway. Compared to the control group, ZTP(1.08 g/kg) significantly enhanced field excitatory postsynaptic potential(fEPSP) slope in Schaffer Collateral-CA1 pathway; Glyceryl trinitrate(10 mg/kg) significantly reduced f EPSP slope in Schaffer Collateral-CA1 pathway; Neither ZTP(0.54 g/kg) nor flunarizine(0.9 mg/kg) significant effects on LTP in Schaffer Collateral-CA1 pathway, Compared to the model group, ZTP(1.08 g/kg), ZTP(0.54 g/kg), and Flunarizine(0.9 mg/kg) had significantly enhanced fEPSP slope in Schaffer Collateral-CA1 pathway.Conclusion: Combined with the previous study, the results gave a clue that the effects of ZTP on TRPV1 and hippocampal LTP or their interactions could be the important molecular mechanisms of ZTP acting as migraine and headache medication.展开更多
基金supported by the Natural Science Foundation of China(NSFC,30972512 and 81202182)the Research Foundation for the Doctoral Program of Higher Education(20121417110002)
文摘Objective To explore the effects of exposure to aluminum (AI) on long-term potentiation (LTP) and AMPA receptor subunits in rats in vivo. Methods Different dosages of aluminum-maltolate complex [Al(mal)3] were given to rats via acute intracerebroventricular (i.c.v.) injection and subchronic intraperitoneal (i.p.) injection. Following AI exposure, the hippocampal LTP were recorded by field potentiation technique in vivo and the expression of AMPAR subunit proteins (GluR1 and GluR2) in both total and membrane-enriched extracts from the CA1 area of rat hippocampus were detected by Western blot assay. Results Acute AI treatment produced dose-dependent suppression of LTP in the rat hippocampus and dose-dependent decreases of GluRz and GluR2 in membrane extracts; however, no similar changes were found in the total cell extracts, which suggests decreased trafficking of AMPA receptor subunits from intracellular pools to synaptic sites in the hippocampus. The dose-dependent suppressive effects on LTP and the expression of AMPA receptor subunits both in the membrane and in total extracts were found after subchronic AI treatment, indicating a decrease in AMPA receptor subunit trafficking from intracellular pools to synaptic sites and an additional reduction in the expression of the subunits. Conclusion Al(mal)3 obviously and dose-dependently suppressed LTP in the rat hippocampal CA1 region in vivo, and this suppression may be related to both trafficking and decreases in the expression of AMPA receptor subunit proteins. However, the mechanisms underlying these observations need further investigation.
基金supported by the National Basic Research Program of China(No.2002CB512907)the National Natural Science Foundation of China(No.30630057).
文摘Objective To explore the changes in spatial learning performance and long-term potentiation (LTP) which is recognized as a component of the cellular basis of learning and memory in normal and lead-exposed rats after administration of melatonin (MT) for two months. Methods Experiment was performed in adult male Wistar rats (12 controls, 12 exposed to melatonin treatment, 10 exposed to lead and 10 exposed to lead and melatonin treatment). The lead-exposed rats received 0.2% lead acetate solution from their birth day while the control rats drank tap water. Melatonin (3 mg/kg) or vehicle was administered to the control and lead-exposed rats from the time of their weaning by gastric gavage each day for 60 days, depending on their groups. At the age of 81-90 days, all the animals were subjected to Morris water maze test and then used for extracellular recording of LTP in the dentate gyrus (DG) area of the hippocampus in vivo. Results Low dose of melatonin given from weaning for two months impaired LTP in the DG area of hippocampus and induced learning and memory deficit in the control rats. When melatonin was administered over a prolonged period to the lead-exposed rats, it exacerbated LTP impairment, learning and memory deficit induced by lead. Conclusion Melatonin is not suitable for normal and lead-exposed children.
基金This project was supported by grant from the National Nature Science Foundation of China (No.39270591)
文摘Experiments were performed on 64 Sprague-Dawley rats under ure-thane anesthesia. Extracellular recording method was used to investigate the effect of aluminum (Al)microinjected into CA3 on long-term potentiation (LTP) in this area. The relationship between the inhibitory effect of Al and L-arginine-NO pathway was also studied. Microinjection of Al (0. 5 mol/L, 1 μl ) into CA3 could block the induction of LTP in CA3. Microinjection of Al (0. 5 mol/L, 1 μl) into CA3 after LTP was induced could also decrease the amplitude of population spike (PS). The inhibitory effect of Al on LTP in CA3 could be enhanced by preinjection of NG-nitro-L-arginine (0. 3 mol/L, 1 μl). Preinjection of L-arginine (0. 3 mol/L, 1 μl) into CA3 could antagonize the inhibitory effect of Al on LTP. These results suggest that Al could block the induction of LTP and decrease the amplitude of PS potentiated in CA3. The effect of Al might be antagonized by L-arginine-NO pathway.
基金supported by the Natural Science Foundation of Hebei Province, No. 2004000653Key Project of Hebei Province Health Department, No. 200901830
文摘Osthole, an effective monomer in Chinese medicinal herbs, can cross the blood-brain barrier and protect against brain injury, with few toxic effects. In this study, a rat model of Alzheimer's disease was established after intracerebroventricular injection of β-amyloid peptide (25-35). Subsequently the rats were intraperitoneally treated with osthole (12.5 or 25.0 mg/kg) for 14 successive days. Results showed that osthole treatment significantly improved cognitive impairment and protected hippocampal neurons of AIzheimer's disease rats. Also, osthole treatment alleviated suppressed long-term potentiation in the hippocampus of Alzheimer's disease rats. In these osthole-treated Alzheimer's disease rats, the level of glutamate decreased, but there was no significant change in y-amino-butyric acid. These experimental findings suggest that osthole can improve learning and memory impairment, and increase synaptic plasticity in Alzheimer's disease rats. These effects of osthole may be because of its regulation of central glutamate and y-amino-butyric acid levels.
文摘A hydroethanolic extract (20% V/V) from Herba Sideritis scardica has been recognized to positively influence cognition. The present investigation aimed at the question if this extract would be able to modify intra-hippocampal communication after oral administration of 100 mg/kg daily for one week. The glutamatergic synapse between Schaffer Collaterals and pyramidal cells can be tested by electric stimulation using single pulses or theta burst stimulation. The resulting population spike is modulated by compounds acting at the central nervous system or other preparations directly or as ex vivo approach. In this case the effect of the special extract was tested in vitro the next day after repetitive in vitro administration. Conventional recording technique in the in vitro hippocampus slice revealed an increase of the population spike in the presence of single stimuli and theta burst stimuli resulting in increased long-term potentiation. This effect was tried to modulate by several glutamate receptor antagonists, among them compounds targeting at the ionic NMDA receptor (CGS19755), AMPA receptor (NBQX), Kainate receptor (UBP301) and targeting at three metabotropic glutamate receptors (mGluR I (YM298198), mGluRII ((RS)-APICA)) and mGluRIII (MSOP). Only NBQX was able to prevent the action of the Sideritis scardica extract. Since the AMPA receptor has been related to cognition in several reports in the literature, it is concluded from this result that the positive action of Sideritis scardica extract on brain function involves a modulation of AMPA receptor dependent neurotransmission.
基金supported by grants to BML from the National Natural Science Foundation of China(Grant Nos.39970244&30225023)the Shanghai Metropolitan Fund for Research and Development(00JC14040)the Ministry of Science and Technology(National Basic Science Program,G1999054000).
文摘Activation of b-adrenoceptors in area CA1 of the hippocampus facilitates in vitro long-term potentiation (LTP) in this region. However, it is unclear if in vivo LTP in area CA1 and hippocampus-dependent learning are subjected to b-adrenergic regulation. To address this ques-tion, we investigated the effects of the b-adrenergic agonist L-isoproterenol or antagonist DL-propranolol on in vivo LTP of area CA1 and the spatial learning in Morris water maze. In the presence of L-isoproterenol (through local infusion into area CA1), the theta-pulse stimulation with the parameter of 10 Hz, 150 pulses/train, 1 train, a frequency weakly modifying synaptic strength, induced a robust LTP, and this effect was blocked when DL-propranolol was co-administered. By contrast, the theta-pulse stimulation with the parameter of 5 Hz, 150 pulses/train, 3 trains, a fre-quency strongly modifying synaptic strength, induced a significantly smaller LTP when DL-propranolol was administered into area CA1. Accordingly, DL-propranolol impaired the spatial learning in the water maze when infused into area CA1 20 min pretraining. Compared with control rats, the DL-propranolol-treated rats showed significantly slower learning in the water maze and subsequently exhibited poor memory retention at 24-h test. These results suggest that b-adrenoceptors in area CA1 are involved in regulating in vivo synaptic plasticity of this area and are important for spatial learning.
文摘After intraperitoneal injection of 20 mg/kg lead acetate, rats received 8 weeks of treadmill exercise (15-22 m/min, 25-64 minutes) and/or treadmill exercise at 1.6 km/h until exhaustion. The markers related to neurotoxicity were measured by enzyme-linked immunosorbent assay method. 8 weeks of treadmill exercise significantly increased brain-derived neurotrophic factor level in the hippocampus (P = 0.04) and plasma level of total antioxidant capacity of rats exposed to lead acetate (P 〈 0.001), and significantly decreased plasma level of malondialdehyde (P 〈 0.001). Acute exercise only decreased the hippocampal malondialdehyde level (P = 0.09) and increased brain-derived neurotrophic factor level in the hippocampus (P = 0.66). Acute exercise also enhanced the total antioxidant capacity in rats exposed to lead acetate, insignificantly (P = 0.99), These findings suggest that chronic treadmill exercise can significantly decrease neurotoxicity and alleviate oxidative stress in rats exposed to lead acetate. However, acute endurance exercise was not associated with these beneficial effects.
基金the Ministry of Science and Technology(No.2013ZX09201022)Scientific Research Common Program of Beijing Municipal Commission of Education(No.KM201 100250)National Natural Science Foundation of China(No.81373418)for financial support of this project
文摘Objective: To investigate the effects of Zhengtian Pills(ZTP) on long term potentiation(LTP) both in Schaffer-CA1 in vitro and perforant path-dentate gyrus(PP-DG) synapses in vivo.Methods: Sprague-Dawley rats were randomly divided into five groups: control, positive control, migraine model, low-, and high-dose ZTP groups. Glyceryl trinitrate(10 mg/kg) was injected subcutaneously to make migraine rat model. Flunarizine(0.9 mg/kg) was set as positive control. Extracellular recording technique in vivo was used to record the effects of ZTP on LTP of PP-DG pathway in anesthetized rats; Using extracellular recording technique in vitro, the effects of ZTP on LTP of Schaffer Collateral-CA1 pathway in rat hippocampal slices were investigated.Results: Compared to the control group, ZTP(1.08 g/kg) significantly enhanced population spike amplitude in PP-DG pathway; Glyceryl trinitrate(10 mg/kg) significantly reduced population spike amplitude in PP-DG pathway; Neither ZTP(0.54 g/kg) nor Flunarizine(0.9 mg/kg) had significant effects on LTP in PP-DG pathway. Compared to the model group, ZTP(1.08 g/kg), ZTP(0.54 g/kg), and flunarizine(0.9 mg/kg) significantly enhanced population spike amplitude in PP-DG pathway. Compared to the control group, ZTP(1.08 g/kg) significantly enhanced field excitatory postsynaptic potential(fEPSP) slope in Schaffer Collateral-CA1 pathway; Glyceryl trinitrate(10 mg/kg) significantly reduced f EPSP slope in Schaffer Collateral-CA1 pathway; Neither ZTP(0.54 g/kg) nor flunarizine(0.9 mg/kg) significant effects on LTP in Schaffer Collateral-CA1 pathway, Compared to the model group, ZTP(1.08 g/kg), ZTP(0.54 g/kg), and Flunarizine(0.9 mg/kg) had significantly enhanced fEPSP slope in Schaffer Collateral-CA1 pathway.Conclusion: Combined with the previous study, the results gave a clue that the effects of ZTP on TRPV1 and hippocampal LTP or their interactions could be the important molecular mechanisms of ZTP acting as migraine and headache medication.