We propose a quantum-mechanical Brayton engine model that works between two superposed states,employing a single particle confined in an arbitrary power-law trap as the working substance. Applying the superposition pr...We propose a quantum-mechanical Brayton engine model that works between two superposed states,employing a single particle confined in an arbitrary power-law trap as the working substance. Applying the superposition principle,we obtain the explicit expressions of the power and efficiency,and find that the efficiency at maximum power is bounded from above by the function: η+= θ/(θ+1),with θ being a potential-dependent exponent.展开更多
基金Supported by the National Natural Science Foundation of China under Grant Nos.1150509111265010+1 种基金and 11365015the Jiangxi Provincial Natural Science Foundation under Grant No.20132BAB212009
文摘We propose a quantum-mechanical Brayton engine model that works between two superposed states,employing a single particle confined in an arbitrary power-law trap as the working substance. Applying the superposition principle,we obtain the explicit expressions of the power and efficiency,and find that the efficiency at maximum power is bounded from above by the function: η+= θ/(θ+1),with θ being a potential-dependent exponent.