The use of antibiotics for prophylaxis and growth enhancement in livestock farming is on the increase globally. This practice has led to the emergence and spread of antimicrobial-resistant bacteria in livestock. Only ...The use of antibiotics for prophylaxis and growth enhancement in livestock farming is on the increase globally. This practice has led to the emergence and spread of antimicrobial-resistant bacteria in livestock. Only limited research has been done to establish the role of cattle farming in antimicrobial resistance. The current study sought to establish the carriage of multi-drug resistance and extended-spectrum beta-lactamase genes in Escherichia coli from farmers, their cattle, and cattle slurry within Kiambu County. A total of 286 (81%) E. coli isolates were recovered from 352 samples analysed. Antibiotic resistance profiles showed 114 (40%) isolates were resistant to ≥3 antimicrobial classes and were considered multidrug-resistant. Among multidrug-resistant (MDR) E. coli strains, 40 (14%) were resistant to 3 different antimicrobial classes, while 71 (25%) were resistant to between 4 and 7 antibiotic classes. Extended-spectrum β-lactamase resistance was found in 18 isolates: human (n = 14), cattle (n = 2), and environmental (n = 2). Both the bla<sub>CTX-M</sub> and bla<sub>TEM</sub> genes were detected in 10 and 15 strains, respectively. Sequence analysis showed that the isolates carried the bla<sub>TEM-116</sub> (n = 7), bla<sub>TEM-1</sub> (n = 5), and bla<sub>CTX-M-15</sub> (n = 8) genes. Genotyping MDR isolates using (GTG) <sub>5</sub> PCR demonstrated that the isolates were not clonal. This data shows antimicrobial resistance profiles and different types of resistance genes in the E. coli population on dairy farms. As a result, more effective, targeted public health policies and measures need to be put in place to control and prevent the emergence and spread of resistant bacteria.展开更多
Objective: To evaluate the drug susceptibility profiles and the frequency of beta-lactamase encoding genes in Pseudomonas aeruginosa (P. aeruginosa) obtained from burn patients. Methods: Totally 93 non-duplicate clini...Objective: To evaluate the drug susceptibility profiles and the frequency of beta-lactamase encoding genes in Pseudomonas aeruginosa (P. aeruginosa) obtained from burn patients. Methods: Totally 93 non-duplicate clinical isolates of P. aeruginosa were recovered from burn patients of Taleghani Burn Hospital of Ahvaz. Antibiotic susceptibility testing was conducted by disk diffusion method according to the CLSI 2017 recommendations. PCR assay was performed by to find beta-lactamase encoding genes. Results: In this study, most clinical specimen was obtained via wound swabs [65 (69.9%)], followed by blood [14 (15.1%)] and biopsy (7 (7.5%))Forty-two (45.16%) patients were male and 51(54.84%) were female. High resistance was observed for most of antibiotics especially for gentamicin and ciprofloxacin (Up to 85%), whereas the highest susceptibility was reported for colistin (100.0%), followed by ceftazidime (66.7%). According to PCR results, 16.1% (15), 9.7% (9) and 14.0% (13) of isolates carried blaDHA, blaVEB and blaGES genes, respectively. It also revealed that the blaVEB gene was found to coexist within 2 isolates (2.2%). Conclusions: Antibacterial resistance is high among P. aeruginosa isolates. Colistin is highly active against multi-drug resistant P. aeruginosa isolates. Antimicrobial susceptibility testing can confine indiscriminate uses of antibiotics and resistance increase, and can improve management of treatment.展开更多
Objective:To determine the clinical implication of and intestinal carriage with methicillin resistant Staphylococcus aureus(MRSA) and extended spectrumβ-lactamase(ESBL)-producing Enterobacteriacae.Methods: A total of...Objective:To determine the clinical implication of and intestinal carriage with methicillin resistant Staphylococcus aureus(MRSA) and extended spectrumβ-lactamase(ESBL)-producing Enterobacteriacae.Methods: A total of 180 stool specimens were screened for MRSA and ESBL-producing enterobacteria.Identification of ESBL- producing Enterobacteriacae was done by MicroScan Walk Away 96 system(Dade Behring Inc.,West Sacramento,CA 95691,USA ) and confirmation by double-disc synergy test.MRSA was identified by disc diffusion using 30μg cefoxitin disc and the MicroScan.Results:The rate of fecal MRSA carriage was 7.8% (14/180),35.7%(5 /14) were recovered from surgical wards.Three patients(21,4%) had MRSA recovered from other body sites,and 2(14.2%) had in addition ESBL -producing Escherichia coli(E.coli) and Klebsiella pneumoniae(K.pneumoniae) respectively.Four(28.5%) patients with MRSA fical carriage died. MRSA fecal carriage was recovered from both inpatients and outpatients.Four(2.2%) cases carried ESBL-producing Enterobacteriacae in feces.Three(75%) were from intensive care unit(ICU).One patient had both ESBL-producing E.coli and K.pneumoniae from stool as well as E.coli from tracheal aspirate.Two ICU patients with fecal ESBL died.Conclusion:Fecal screening for MRSA and ESBL of all patients at high risk admitted to different hospital wards and ICUs and implementing infection control measures were recommended.展开更多
Background: Extended-spectrum β-lactamase (ESBL)-producing Escherichia coli (E. coli) and Klebsiella pneumoniae (K. pneumoniae) are the important pathogens causing pneumonia. This study aimed to investigate the clini...Background: Extended-spectrum β-lactamase (ESBL)-producing Escherichia coli (E. coli) and Klebsiella pneumoniae (K. pneumoniae) are the important pathogens causing pneumonia. This study aimed to investigate the clinical characteristics and molecular epidemiology of ESBL-producing E. coli and K. pneumoniae causing pneumonia at a large teaching hospital in China. Methods: We collected patient's clinical data and ESBL-producing E. coli and K. pneumoniae strains causing pneumonia (from December 2015 to June 2016) at a hospital in Wuhan. The susceptibilities, multi-locus sequence typing, homologous analysis, ESBL genes by polymerase chain reaction and sequencing were determined. Results: A total of 59 ESBL-producing strains (31 E. coli and 28 K. pneumoniae) isolated from patients with pneumonia were analyzed. The majority of strains were isolated from patients were with hospital-acquired pneumonia (37/59, 62.7%), followed by community-acquired pneumonia (13/59, 22.0%), and ventilator-related pneumonia (9/59, 15.3%). The E. coli ST131 (9 isolates, 29.0%) and K. pneumoniae ST11 (5 isolates, 17.9%) were the predominant sub-types. The most prevalent ESBL gene was CTX-M-14, followed by SHV-77, CTX-M-3, SHV-11, and CTX-M-27. At least 33 (55.9%) of the ESBL-producing strains carried two or more ESBL genes. The ISEcp1 and IS26 were found upstream of all blaCTX-M (CTX-Ms) and of most blaSHV (SHVs)(57.6%), respectively. Moreover, three ESBL-producing K. pneumoniae ST11 strains which were resistant to carbapenems carried the blaNDM-1 and blaKPC-2, two of which also bearing blaOXA-48 were resistant to all antibiotics (including Tigecycline). Conclusions: Hospital-acquired pneumonia is more likely correlated with ESBL-producing E. coli and K. pneumoniae. ESBL-producing E. coli ST131 and multi-drug resistance ESBL-producing, as well as New Delhi metallo-β-lactamase-1 (NDM-1) and Klebsiella pneumoniae carbapenemases-2 (KPC-2) bearing K. pneumoniae ST11 are spreading in patients with pneumonia in hospital.展开更多
Bsckgroud AmpC β-lactamases and extended-spectrum β-lactamases (ESBLs) are becoming predominant causes of resistance to third and forth-generation cephalosporins in Klebsiella pneumoniae (K. pneumoniae). It is v...Bsckgroud AmpC β-lactamases and extended-spectrum β-lactamases (ESBLs) are becoming predominant causes of resistance to third and forth-generation cephalosporins in Klebsiella pneumoniae (K. pneumoniae). It is very difficult to treat infectious diseases caused by multidrug-resistant K. pneumoniae. The purpose of the present study was to investigate transconjugation and characteristics of β-lactamase genes in K. pneumoniae producing AmpC β-lactamases and ESBLs. Methods AmpC β-lactamases were detected by three-dimension test and ESBLs by disc confirmatory test. Minimum inhibitory concentrations (MICs) were determined by agar dilution. Transfer of resistance to EC600 (Rifr) was attempted by conjugation in broth and screened on agar containing cefotaxime (2 μg/ml) plus rifampin (1024 μg/ml). The genes encoding AmpC or ESBLs and their transconjugants were detected by PCR and verified by DNA sequencing. Results The resistant rates to ampicillin and piperacillin were 100% in 18 isolates of K. pneumoniae. However, imipenem was still of great bactericidal activity on K. pneumoniae, and its MIC50 was 0.5 μg/mL. Eleven β-lactamase genes, including TEM-1, TEM-11, SHV-13, SHV-28, CTX-M-9, CTX-M-22, CTX-M-55, OXA-1, LEN, OKP-6 and DHA-1, were found from 18 isolates. And at least one β-lactamase gene occurred in each isolate. To our surprise, there were six β-lactamase genes in the CZ04 strain. Among 18 isolates of K. pneumoniae, the partial resistant genes in 8 isolates were conjugated successfully, which had 100% homological sequence with donors by sequence analysis. Compared with donors, 8 transconjugants had attained resistance to most β-lactams, including ampicillin, piperacillin, cefoxitin, cefotaxime and aztreonam, or even amikacin and gentamicin. Conclusions R plasmids can be easily transferred between the resistant and sensitive negative bacilli. It is very difficult to block and prevent the spread of antimicrobial resistance. So more attention should be paid to reducing the frequency, times and dosage of antimicrobials, especially third or fourth cephalosporins.展开更多
Background Extended-spectrum β-lactamase (ESBL)-producing Klebsiella pneumoniae (K.pneumoniae) is one of the most popular pathogens that cause refractory respiratory tract infection.The genetic environment,includ...Background Extended-spectrum β-lactamase (ESBL)-producing Klebsiella pneumoniae (K.pneumoniae) is one of the most popular pathogens that cause refractory respiratory tract infection.The genetic environment,including insertion sequences and the types of promoter,plays a key role in exploration of the mechanism of prevalence and dismission of the ESBL-producing K.pneumoniae isolates.The aim of the investigation was to target analysis the genetic environment and promoter sequences of blaCTX-M,blaSHV and blaTEM,the most popular β-lactamase genes harbored by ESBL-producing K.pneumoniae isolates.Methods From February 2010 to July 2011,158 of 416 K.pneumoniae isolates producing ESBL from patients with lower respiratory tract infection were collected from seven tertiary hospitals from Beijing,Anhui,Fujian,Liaoning,Hebei and Inner Mongolia Autonomous Region in China.The genetic environment including promoters of 10 types of blaCTX-M,18 types of blaSHVand 2 types of blaTEM were analyzed by amplification and direct sequencing with various sets of PCR primers.Results ISEcp1 was located upstream of the 5' end of the blaCTX-M gene in 130 (97.0%) out of 134 K.pneumoniae isolates harboring blaCTX-M and provided a conserved promoter to blaCTX-M.A non-coding sequence preceded by kdpC and recF was identified in all of the blaSHV genes except blaSHV-12 and blaSHV-2a.IS26 was also found upstream of 1 blaCTX-M-15,10 blaSHV-1 strains,4 blaTEM-1 and all of the blaSHV-2,blaSHV-2a,blaSHV-5 and blaSHV-12.Eighty-seven of 91 strains harboring blaTEM-1 carried a copy of Tn2 and IS26-blaTEM-1 fragments were also detected in 4 strains.With respect to K.pneumoniae,the genetic environment of blaCTX-M-38,blaSHV-142 and blaTEM-135 were firstly elaborated,and four kinds of novel genetic environment of blaCTX-M-3,blaCTX-M-15 and blaTEM-1 have been detected as well.Conclusions Perfective implementation of the genetic environment information of β-lactamase gene needs to be further explored and supplemented.ISEcp1 and IS26 elements are widespread upstream of the blaCTX-M,blaSHV and blaTEM genes and contribute to horizontal transmission and genetic expression.展开更多
Objective:To determine the distribution,phenotypic and genetic background of extended spectrumβ-lactamases(ESBL)-producing Klebsiella(K.)pneumoniae clinical isolates associated with K1 and K2 serotypes in two selecte...Objective:To determine the distribution,phenotypic and genetic background of extended spectrumβ-lactamases(ESBL)-producing Klebsiella(K.)pneumoniae clinical isolates associated with K1 and K2 serotypes in two selected hospitals in Malaysia.Methods:A total of 192 K.pneumoniae isolates were collected and subjected to antibiotic susceptibility,hypermucoviscosity test and multiplex PCR to detect the presence of K1-and K2-serotype associated genes.Multilocus sequence typing(MLST)was performed on ESBL-producing K.pneumoniae isolates presented with K1 and K2 serotypes,followed by phylogenetic analysis.Results:A total of 87 out of 192(45.3%)of the K.pneumoniae isolates collected were ESBL producers.However,only 8.3%(16/192)and 10.9%(21/192)of the total isolates were detected to carry K1-and K2-serotype associated genes,respectively.Statistical analysis showed that K1 and K2 capsular serotypes were not significantly associated with ESBL phenotype(P=0.196).However,they were significantly associated with hypervirulent,as demonstrated by the positive string test(P<0.001).MLST analysis revealed that ST23 as the predominant sequence type(ST)in the K1 serotype,while the ST in the K2 serotype is more diverse.Conclusions:Although the occurrence of ESBL-producing isolates among the hypervirulent strains was low,their coexistence warrants the need for continuous surveillance.MLST showed that these isolates were genetically heterogeneous.展开更多
To analyse the genotypes of clinical isolates of Extended-Spectrum-β-Lactamase-Producing (ESBL-producing) Proteus mirabilis (P. mirabilis) and the mechanisms of antimicrobial resistance, to guide reasonable use of an...To analyse the genotypes of clinical isolates of Extended-Spectrum-β-Lactamase-Producing (ESBL-producing) Proteus mirabilis (P. mirabilis) and the mechanisms of antimicrobial resistance, to guide reasonable use of antibiotics and to avoid nosocomial outbreak infections by ESBL-producing P. mirabilis. 125 clinical isolates of P. mirabilis were collected from the Drug-Resistant Bacteria Surveillance Center of Anhui Province (from Jan 2009 to May 2010). Searching for the genotypes of ESBLs was perfomed by PCR amplification and DNA sequencing, and performed conjugation test simultaneously. Among ESBL-producing strains, CTX-M was the major genotype (3 CTX-M-13 and 1 CTX-M-3). TEM-1b spectrum β-lactamase was also prevalence in P. mirabilis. The diversity of β-lactamases in P. mirabilis and the emergency of multi-drug-resistance clinical strains will present serious threat to clinical therapy and even will lead to outbreak of nosocomial infections. Our study emphasizes the need for enhanced supervision of ESBL-producing P. mirabilis. Timely and reasonable drug-resistance data are indispensable to clinical therapy.展开更多
The antibacterial activity of beta-lactam antibiotics or their combinations with inhibitor sulbactum against non-lactamase- producing strains, lactamase-producing and ESBLs-producing isolates was evaluated with twofol...The antibacterial activity of beta-lactam antibiotics or their combinations with inhibitor sulbactum against non-lactamase- producing strains, lactamase-producing and ESBLs-producing isolates was evaluated with twofold dilution method after pathogens isolated from pigs and chickens were detected, respectively, for beta-lactamase and extended-spectrum beta- lactamases (ESBLs), The results revealed that most of 43 clinically isolated strains could produce beta-lactamase and 3 strains of shigella isolated from chicken samples produced ESBLs. All of 30 lactamase-producing strains isolated and only one of 16 non-lactamase-producing strains were resistant to amoxicillin and ampicillin. MICs of ampicillin against lactamaseproducing isolates decreased 10-40 and 10-20 times respectively, when it was conbined with sulbactam at ration of 1:2 and 1:4. All clinical isolates were susceptible to third-generation cephalosporins. The MICs of third-generation cephalosporins against lactamase-producing isolates did not change when they were conbined with sulbactam. MICs of ceftiofur and ceftriaxone against ESBLs-producing isolates decreased 2-4 times when they were conbined with sulbactam.展开更多
Background: Recently micro-organisms that synthesize extended-spectrum β-lactamase (ESBLs) were increased. The peculiarities of ESBL synthesis of Escherichia coli and Klebsiella pneumoniae strains that cause nosocomi...Background: Recently micro-organisms that synthesize extended-spectrum β-lactamase (ESBLs) were increased. The peculiarities of ESBL synthesis of Escherichia coli and Klebsiella pneumoniae strains that cause nosocomial urinary tract infections, surgical site infections and pneumonia in surgical clinic were studied. ESBL synthesis were observed 38.9% of E. coli strains obtained from urine, 92.3% of strains obtained from surgical site infections, and 50% of strains obtained from sputum. ESBL synthesis were observed 37.5% of K. pneumoniae strains obtained from urine, 85.7% of strains obtained from surgical site infections, and 60% of strains obtained from sputum. Different levels of ESBL synthesize of E. coli and K. pneumoniae strains isolated from different pattern is discussed. Conclusion. ESBL synthesis is common in E. coli and K. pneumoniae strains, which cause nosocomial infections. The frequency of occurrence of ESBL s synthesis among of these strains depends on clinical forms of nosocomial infections.展开更多
BACKGROUND Appendicitis, the inflammation of the appendix, is the most common abdominal surgical emergency requiring expedient surgical intervention. Extendedspectrum beta-lactamases(ESBLs) are bacterial enzymes that ...BACKGROUND Appendicitis, the inflammation of the appendix, is the most common abdominal surgical emergency requiring expedient surgical intervention. Extendedspectrum beta-lactamases(ESBLs) are bacterial enzymes that catalyse the degradation of the betalactam ring of penicillins and cephalosporins(but without carbapenemase activity), leading to resistance of these bacteria to beta-lactam antibiotics. Recent increases in incidence of ESBL-producing bacteria have caused alarm worldwide. Proportion estimates of ESBLEnterobacteriaceae hover around 46% in China, 42% in East Africa, 12% in Germany, and 8% in the United States.CASE SUMMARY The impact of ESBL-producing bacteria on appendiceal abscesses and consequent pelvic abscesses are yet to be examined in depth. A literature review using the search words "appendiceal abscesses" and "ESBL Escherichia coli(E. coli)" revealed very few cases involving ESBL E. coli in any capacity in the context of appendiceal abscesses. This report describes the clinical aspects of a patient with appendicitis whodeveloped a postoperative pelvic abscess infected with ESBL-producing E. coli. In this report, we discuss the risk factors for contracting ESBL E. coli infection in appendicitis and post-appendectomy pelvis abscesses. We also discuss our management approach for postappendectomy ESBL E. coli pelvic abscesses, including drainage, pathogen identification, and pathogen characterisation. When ESBL E. coli is confirmed, carbapenem antibiotics should be promptly administered, as was done efficaciously with this patient. Our report is the first one in a developed country involving ESBL E. coli related surgical complications in association with a routine laparoscopic appendectomy.CONCLUSION Our report is the first involving ESBL E. coli and appendiceal abscesses, and that too consequent to laparoscopic appendectomy.展开更多
We report the very rare case of a huge appendical abscess with extended-spectrum beta-lactamase (ESBL)-producing Escherichia coli (E. coli) as the pathogen. There have been several reports of appendical infections suc...We report the very rare case of a huge appendical abscess with extended-spectrum beta-lactamase (ESBL)-producing Escherichia coli (E. coli) as the pathogen. There have been several reports of appendical infections such as appendicitis and appendical abscess caused by ESBL-producing bacteria in adults. The treatment of ESBL-producing E. coli infection is specific, and ESBL-producing bacteria have recently been reported as pathogens associated appendicitis in children. To the best of our knowledge, this is the second report of perforated appendicitis with abscess due to ESBL-producing E. coli. We discuss the diagnostic modalities and treatments for appendical abscess with ESBL-producing E. coli. and propose that the patients with perforated appendicitis and abscess formation due to ESBL-producing E. coli should be administered the antibiotic MEPM within 2 weeks to treat the abscess more effec-tively without producing other multidrug-resistant bacteria.展开更多
The clinical and microbiologic characteristics of 34 patients with extended-spectrum β-lactamase (ESBL) positive E. coli isolated from blood were compared to 66 bacteremic patients with ESBL negative E. coli, from Ja...The clinical and microbiologic characteristics of 34 patients with extended-spectrum β-lactamase (ESBL) positive E. coli isolated from blood were compared to 66 bacteremic patients with ESBL negative E. coli, from January 2007 through December 2009. Of the 21 ESBL positive isolates available for PCR analysis, 13 were positive for CTX-M, 8 for TEM, 4 for SHV β-lactamases, with 6 possessing multiple enzymes. Twenty of 34 (59%) ESBL-positive and 41 of 66 (62%) ESBL-negative blood isolates were considered community-associated. All but one isolate in both groups had MICs of ≤1.0 μg/ml to meropenem. However, when compared to ESBL-negative isolates, ESBL-positive isolates were more frequently resistant to levofloxacin, trimethoprim/sulfamethoxazole and had higher MICs to gentamicin, tobramycin and piperacillin/tazobactam. The use of intravenous and urinary catheters was strongly associated with the isolation of E. coli bloodstream isolates in both groups of patients. Although hospital stay was similar in both groups, appropriate therapy was given in 87% of patients with ESBL positive vs. 98% of patients with ESBL negative isolates and mortality was greater for patients with ESBL positive isolates (26% vs. 17%). Since a large proportion of E. coli blood isolates were ESBL-positive and community-associated, carbapenems should be considered as initial empiric therapy for such infections in our locale.展开更多
Background: Extended-spectrum β-lactamases (ESBLs) are enzymes capable of hydrolyzing extended-spectrum cephalosporins, penicillins and monobactams but inactive against cephamycins and carbapenems. The ESBL-producing...Background: Extended-spectrum β-lactamases (ESBLs) are enzymes capable of hydrolyzing extended-spectrum cephalosporins, penicillins and monobactams but inactive against cephamycins and carbapenems. The ESBL-producing organisms are a breed of multidrug-resistant pathogens. Objectives: This study was aimed to determine the susceptibility pattern of ESBL-producing Escherichia coli to ciprofloxacin, amikacin and imipenem. Methods: A total of 75 ESBL-producing E. coli, were obtained from the tertiary care hospitals of Bangladesh and were studied for susceptibility pattern from October, 2010 to December, 2011. These isolates were identified by double disc synergy test (DDST) and were confirmed phenotypically as ESBL-producer by phenotypic confirmatory disc diffusion test (PCDDT). Minimum inhibitory concentrations (MICs) of ciprofloxacin, amikacin and imipenem among ESBL-producing E. coli were determined using agar dilution method. Results: Out of 75 DDST positive ESBL-producing E. coli, 71 (94.67%) were also positive by PCDDT. All ESBL-producing E. coli, were susceptible to imipenem. About 92.95% ESBL-producing E. coli were susceptible to amikacin but only 14.08% were susceptible to ciprofloxacin. Conclusion: In this study, ESBL-producing E. coli, showed high resistance to ciprofloxacin. Imipenem and amikacin were most effective against ESBL positive strains.展开更多
Background: Multidrug resistance and production of extended spectrum β-lactamases (ESBLs) by a large group of bacterial agents in hospitals are to be a matter of scientific concern. Objective: This cross-sectional st...Background: Multidrug resistance and production of extended spectrum β-lactamases (ESBLs) by a large group of bacterial agents in hospitals are to be a matter of scientific concern. Objective: This cross-sectional study was aimed to investigate the prevalence of ESBL producing Proteus species and risk factors associated with hospital acquired infection in addition to study the antibiotics susceptibility patterns of all bacterial isolates from inpatients of four Yemeni general hospitals. Methods: A total of 740 consecutive non-repeat culture isolates were obtained from admitted patients of Al-Kuwait University Hospital, Al-Thowra General Hospital, Al-Jumhori Teaching Hospital, and Military General Hospitals Sana’a city. We used Kirby-Bauer disk diffusion method to detect antimicrobial susceptibility and establish the presence of ESBLs-producing bacteria according to the Clinical and Laboratory Standards Institute guidelines. Results: Out of 740 isolate, 233 (31.5%) were Escherichia coli followed by Staphylococcus aureus 188 (25.4%), Pseudomonas aeruginosa 149 (20.1%), Klebsiella sp. 107 (14.5%), Enterococcus faecalis 25 (3.4%) and Proteus spp. 38 (5.1%). The highest frequencies of ESBLs producing among Proteus sp. were Proteus mirabilis 26 out 38 (68.4%) and Proteus vulgaris 12 out 38 (31.6%). The most effective of antimicrobial susceptibility pattern among Proteus spp. were Imipenem (100%) followed by Pipracillin-Tazobactam (92.3%) for P. mirabilis and (83.3%) for P. vulgaris, while the Amikacin (80.8%) for P. mirabilis and P. vulgaris with (91.7%). Amoxicillin and Cefotaxime were the highest for both species (100%). Conclusion: The prevalence of ESBL-producing Proteus spp. detected in this study is of great concern for public health authorities and a strict adherence of infection control policies and procedures with continuous antibiotics resistance surveillance including antimicrobial management and routine detection of ESBL-producing isolates are very important to prevent nosocomial infections.展开更多
Objective:To investigate the role of a rapid polymerase chain reaction(PCR)assay in comparison with traditional empiric therapy in detection of extended spectrum β-lactamase(ESBL)producer Escherichia coli(E.coli).Met...Objective:To investigate the role of a rapid polymerase chain reaction(PCR)assay in comparison with traditional empiric therapy in detection of extended spectrum β-lactamase(ESBL)producer Escherichia coli(E.coli).Methods:Ninety isolates of E.coli from urinary tract infection were collected and screening of ESBL resistance using disc diffusion method,minimum inhibitory concentration(MIC)for ceftazidime and detection of TEM resistant gene by PCR were done.Results:The results of disc diffusion method showed that forty out of ninety E.coli isolates were ESBLs producing organisms.Antibiotic susceptibility of E.coli isolates to 9 antibacterial agents were evaluated.However,all isolated E.coli were resistant to all 9 antibacterial agents by these percentage:ceftriaxon(100%),ceftazidime(100%),amoxicillin(100%),erythromycin(100%),azithromycin(95%),cefixime(87.5%),tetracyclin(87.5%),nalidixic acid(85%)and difloxcain(75%).The abundance of antibiotic-resistant TEM gene according to PCR was 30%.Totally 82.5%of strains tested by MIC were observed as ceftazidime-resistant.Conclusions:We conclude that the TEM gene PCR assay is a rapid,sensitive and clinically useful test,particularly for the early detection of ESBLs-producing E.coli.展开更多
The improper use of antimicrobials against infectious diseases has allowed microorganisms to develop defense mechanisms that give them insensitivity to these agents. All bacteria are concerned by this phenomenon. This...The improper use of antimicrobials against infectious diseases has allowed microorganisms to develop defense mechanisms that give them insensitivity to these agents. All bacteria are concerned by this phenomenon. This work aimed to assess prevalence of beta-lactamase produced by enterobacterial isolates. Then, disc diffusion, double disc synergy test (DDST) and combined disc test (CDT) were respectively used for antimicrobial resistance, detection of Extended-Spectrum Beta-Lactamases (ESBL) and Metallo-Beta-Lactamases (MBL). bla genes were detected by PCR. A total of 132 enterobacterial strains were studied. Resistance to antibiotic families was observed with a greater frequency than 50%. Gentamicin was the least active beta-lactam antibiotic, with a resistance rate of 88%. 40.9% of strains show an ESBL phenotype and 16.6% were MBL. An overall prevalence of 74% (40/54) and respectively rates of 29.6%, 27.7% and 16.7% for blaSHV, blaCTX and blaTEM genes were observed. SHV, CTX, CTX/SHV/TEM, CTX/TEM, SHV/TEM and CTX/SHV were different ESBL genotypes observed. ESBL-producing enterobacteria isolation worried about the future of antimicrobial therapy in the Republic of Congo. This is a public health problem that requires careful monitoring and implementation of a policy of rational antibiotics use.展开更多
Treatment of hospital acquired urinary tract infections (UTIs) caused by extended-spectrum beta-Lactamases producing Klebsiella pneumonae is a major problem. This organism expresses a high level of resistance to many ...Treatment of hospital acquired urinary tract infections (UTIs) caused by extended-spectrum beta-Lactamases producing Klebsiella pneumonae is a major problem. This organism expresses a high level of resistance to many groups of antibiotics. Fosfomycin is an agent which is recommended for treatment of UTIs caused by ESBLs producers. The aim of this study is to determine the sensitivity pattern of ESBLs producing urinary K. pneumonae to antimicrobial agents including fosfomycin in patients of MUHs and determine the prevalence of fosfomycin resistance mediated by plasmid mediated fosfomycin modifying enzymes fosA, fosB and fosA3. Methods: Klebsiella pneumonae urinary isolates were collected from patients with hospital acquired UTIs in Mansoura University Hospitals (MUHs). The susceptibility pattern was determined by Kirby Baur method. Isolates resistant to extended spectrum cephalosporins were tested for ESBLs production by double disc diffusion method. Fosfomycin resistance was determined by broth dilution method. Isolates resistant to fosfomycin were tested for fosA, fosB and fosA3 by PCR. Results: A total of 128 ESBLs producing K. pneumonae isolates were collected. The highest sensitivity was to imipenem (94.5%). The lowest was to trimethoprime-sulphamethoxazole (21.8%). Co-resistance of ESBLs isolates with fosfomycin was 23.2%. Eighteen fosfomycin resistant isolates (18/30) were positive to fosA. Conclusion: ESBLs producing urinary Klebsiella pneumonae express moderate sensitivity to fosfomycin. Resistance is mainly mediated by plasmid mediated fosfomycin modifying enzymes fosA.展开更多
To investigate the prevalence and genotype of extended spectrum beta-lactamases (ESBLs) mediated by plasmid in Gram-negative bacteria found in southern China, a total of 1184 clinical isolates of non-repetitive strain...To investigate the prevalence and genotype of extended spectrum beta-lactamases (ESBLs) mediated by plasmid in Gram-negative bacteria found in southern China, a total of 1184 clinical isolates of non-repetitive strains of Gram-negative bacteria were collected in 2001 from 5 different cities in southern China. The ESBLs-producing isolates were distinguished by means of the phenotype confirmatory test based on the NCCLS criteria and were subjected to plasmid conjugation and electroporation experiments. Those clinical isolates succeeded in plasmid transfers had undergone plasmid conjugation and electro-transformation, plasmid DNA extraction and PstⅠ digest finger-printing analysis, as well as the universal primer PCR amplification of the TEM, SHV, CTX-M, VEB, PER and SFO genes and the DNA sequencing in order to determine the genotypes of ESBLs and their plasmid locations. It was found that the incidence of the ESBLs-producing strains of Gram-negative bacteria was 14.6% (173/1184) with 67 strains of transconjugants and 11 strains of electro-transformants, in which CTX-M-14 type was 33.3% (26/78); CTX-M-3 type was 23.1% (18/78); CTX-M-9 type was 14.1% (11/78); CTX-M-5 type was 6.4% ( 5/78); CTX-M-13 type was 2.6% (2/78); SHV-5 type was 7.7% (6/78); SHV-12 type was 5.1% (4/78), SHV-2a type was 2.6% (2/78) and unidentified type was 5.1% (4/78). 29.5% of the wild strains also carried broad-spectrum beta-lactamases TEM-1 and SHV-1 types. The above mentioned ESBLs genes were located on transferable plasmids with variable sizes (from 35 to 190?kb). The CTX-M type ESBLs was characterized by high-level of resistance to cefotaxime. It concluded that the CTX-M-type was the most prevalent genotype in clinical isolates of Gram-negative bacteria in southern China, and the SHV-type ranks in the second place. TEM-, VEB-, Toho- and PER-types were not found in these isolates.展开更多
文摘The use of antibiotics for prophylaxis and growth enhancement in livestock farming is on the increase globally. This practice has led to the emergence and spread of antimicrobial-resistant bacteria in livestock. Only limited research has been done to establish the role of cattle farming in antimicrobial resistance. The current study sought to establish the carriage of multi-drug resistance and extended-spectrum beta-lactamase genes in Escherichia coli from farmers, their cattle, and cattle slurry within Kiambu County. A total of 286 (81%) E. coli isolates were recovered from 352 samples analysed. Antibiotic resistance profiles showed 114 (40%) isolates were resistant to ≥3 antimicrobial classes and were considered multidrug-resistant. Among multidrug-resistant (MDR) E. coli strains, 40 (14%) were resistant to 3 different antimicrobial classes, while 71 (25%) were resistant to between 4 and 7 antibiotic classes. Extended-spectrum β-lactamase resistance was found in 18 isolates: human (n = 14), cattle (n = 2), and environmental (n = 2). Both the bla<sub>CTX-M</sub> and bla<sub>TEM</sub> genes were detected in 10 and 15 strains, respectively. Sequence analysis showed that the isolates carried the bla<sub>TEM-116</sub> (n = 7), bla<sub>TEM-1</sub> (n = 5), and bla<sub>CTX-M-15</sub> (n = 8) genes. Genotyping MDR isolates using (GTG) <sub>5</sub> PCR demonstrated that the isolates were not clonal. This data shows antimicrobial resistance profiles and different types of resistance genes in the E. coli population on dairy farms. As a result, more effective, targeted public health policies and measures need to be put in place to control and prevent the emergence and spread of resistant bacteria.
文摘Objective: To evaluate the drug susceptibility profiles and the frequency of beta-lactamase encoding genes in Pseudomonas aeruginosa (P. aeruginosa) obtained from burn patients. Methods: Totally 93 non-duplicate clinical isolates of P. aeruginosa were recovered from burn patients of Taleghani Burn Hospital of Ahvaz. Antibiotic susceptibility testing was conducted by disk diffusion method according to the CLSI 2017 recommendations. PCR assay was performed by to find beta-lactamase encoding genes. Results: In this study, most clinical specimen was obtained via wound swabs [65 (69.9%)], followed by blood [14 (15.1%)] and biopsy (7 (7.5%))Forty-two (45.16%) patients were male and 51(54.84%) were female. High resistance was observed for most of antibiotics especially for gentamicin and ciprofloxacin (Up to 85%), whereas the highest susceptibility was reported for colistin (100.0%), followed by ceftazidime (66.7%). According to PCR results, 16.1% (15), 9.7% (9) and 14.0% (13) of isolates carried blaDHA, blaVEB and blaGES genes, respectively. It also revealed that the blaVEB gene was found to coexist within 2 isolates (2.2%). Conclusions: Antibacterial resistance is high among P. aeruginosa isolates. Colistin is highly active against multi-drug resistant P. aeruginosa isolates. Antimicrobial susceptibility testing can confine indiscriminate uses of antibiotics and resistance increase, and can improve management of treatment.
文摘Objective:To determine the clinical implication of and intestinal carriage with methicillin resistant Staphylococcus aureus(MRSA) and extended spectrumβ-lactamase(ESBL)-producing Enterobacteriacae.Methods: A total of 180 stool specimens were screened for MRSA and ESBL-producing enterobacteria.Identification of ESBL- producing Enterobacteriacae was done by MicroScan Walk Away 96 system(Dade Behring Inc.,West Sacramento,CA 95691,USA ) and confirmation by double-disc synergy test.MRSA was identified by disc diffusion using 30μg cefoxitin disc and the MicroScan.Results:The rate of fecal MRSA carriage was 7.8% (14/180),35.7%(5 /14) were recovered from surgical wards.Three patients(21,4%) had MRSA recovered from other body sites,and 2(14.2%) had in addition ESBL -producing Escherichia coli(E.coli) and Klebsiella pneumoniae(K.pneumoniae) respectively.Four(28.5%) patients with MRSA fical carriage died. MRSA fecal carriage was recovered from both inpatients and outpatients.Four(2.2%) cases carried ESBL-producing Enterobacteriacae in feces.Three(75%) were from intensive care unit(ICU).One patient had both ESBL-producing E.coli and K.pneumoniae from stool as well as E.coli from tracheal aspirate.Two ICU patients with fecal ESBL died.Conclusion:Fecal screening for MRSA and ESBL of all patients at high risk admitted to different hospital wards and ICUs and implementing infection control measures were recommended.
基金a grant from the National Natural Science Foundation of China (No.81500005).
文摘Background: Extended-spectrum β-lactamase (ESBL)-producing Escherichia coli (E. coli) and Klebsiella pneumoniae (K. pneumoniae) are the important pathogens causing pneumonia. This study aimed to investigate the clinical characteristics and molecular epidemiology of ESBL-producing E. coli and K. pneumoniae causing pneumonia at a large teaching hospital in China. Methods: We collected patient's clinical data and ESBL-producing E. coli and K. pneumoniae strains causing pneumonia (from December 2015 to June 2016) at a hospital in Wuhan. The susceptibilities, multi-locus sequence typing, homologous analysis, ESBL genes by polymerase chain reaction and sequencing were determined. Results: A total of 59 ESBL-producing strains (31 E. coli and 28 K. pneumoniae) isolated from patients with pneumonia were analyzed. The majority of strains were isolated from patients were with hospital-acquired pneumonia (37/59, 62.7%), followed by community-acquired pneumonia (13/59, 22.0%), and ventilator-related pneumonia (9/59, 15.3%). The E. coli ST131 (9 isolates, 29.0%) and K. pneumoniae ST11 (5 isolates, 17.9%) were the predominant sub-types. The most prevalent ESBL gene was CTX-M-14, followed by SHV-77, CTX-M-3, SHV-11, and CTX-M-27. At least 33 (55.9%) of the ESBL-producing strains carried two or more ESBL genes. The ISEcp1 and IS26 were found upstream of all blaCTX-M (CTX-Ms) and of most blaSHV (SHVs)(57.6%), respectively. Moreover, three ESBL-producing K. pneumoniae ST11 strains which were resistant to carbapenems carried the blaNDM-1 and blaKPC-2, two of which also bearing blaOXA-48 were resistant to all antibiotics (including Tigecycline). Conclusions: Hospital-acquired pneumonia is more likely correlated with ESBL-producing E. coli and K. pneumoniae. ESBL-producing E. coli ST131 and multi-drug resistance ESBL-producing, as well as New Delhi metallo-β-lactamase-1 (NDM-1) and Klebsiella pneumoniae carbapenemases-2 (KPC-2) bearing K. pneumoniae ST11 are spreading in patients with pneumonia in hospital.
文摘Bsckgroud AmpC β-lactamases and extended-spectrum β-lactamases (ESBLs) are becoming predominant causes of resistance to third and forth-generation cephalosporins in Klebsiella pneumoniae (K. pneumoniae). It is very difficult to treat infectious diseases caused by multidrug-resistant K. pneumoniae. The purpose of the present study was to investigate transconjugation and characteristics of β-lactamase genes in K. pneumoniae producing AmpC β-lactamases and ESBLs. Methods AmpC β-lactamases were detected by three-dimension test and ESBLs by disc confirmatory test. Minimum inhibitory concentrations (MICs) were determined by agar dilution. Transfer of resistance to EC600 (Rifr) was attempted by conjugation in broth and screened on agar containing cefotaxime (2 μg/ml) plus rifampin (1024 μg/ml). The genes encoding AmpC or ESBLs and their transconjugants were detected by PCR and verified by DNA sequencing. Results The resistant rates to ampicillin and piperacillin were 100% in 18 isolates of K. pneumoniae. However, imipenem was still of great bactericidal activity on K. pneumoniae, and its MIC50 was 0.5 μg/mL. Eleven β-lactamase genes, including TEM-1, TEM-11, SHV-13, SHV-28, CTX-M-9, CTX-M-22, CTX-M-55, OXA-1, LEN, OKP-6 and DHA-1, were found from 18 isolates. And at least one β-lactamase gene occurred in each isolate. To our surprise, there were six β-lactamase genes in the CZ04 strain. Among 18 isolates of K. pneumoniae, the partial resistant genes in 8 isolates were conjugated successfully, which had 100% homological sequence with donors by sequence analysis. Compared with donors, 8 transconjugants had attained resistance to most β-lactams, including ampicillin, piperacillin, cefoxitin, cefotaxime and aztreonam, or even amikacin and gentamicin. Conclusions R plasmids can be easily transferred between the resistant and sensitive negative bacilli. It is very difficult to block and prevent the spread of antimicrobial resistance. So more attention should be paid to reducing the frequency, times and dosage of antimicrobials, especially third or fourth cephalosporins.
文摘Background Extended-spectrum β-lactamase (ESBL)-producing Klebsiella pneumoniae (K.pneumoniae) is one of the most popular pathogens that cause refractory respiratory tract infection.The genetic environment,including insertion sequences and the types of promoter,plays a key role in exploration of the mechanism of prevalence and dismission of the ESBL-producing K.pneumoniae isolates.The aim of the investigation was to target analysis the genetic environment and promoter sequences of blaCTX-M,blaSHV and blaTEM,the most popular β-lactamase genes harbored by ESBL-producing K.pneumoniae isolates.Methods From February 2010 to July 2011,158 of 416 K.pneumoniae isolates producing ESBL from patients with lower respiratory tract infection were collected from seven tertiary hospitals from Beijing,Anhui,Fujian,Liaoning,Hebei and Inner Mongolia Autonomous Region in China.The genetic environment including promoters of 10 types of blaCTX-M,18 types of blaSHVand 2 types of blaTEM were analyzed by amplification and direct sequencing with various sets of PCR primers.Results ISEcp1 was located upstream of the 5' end of the blaCTX-M gene in 130 (97.0%) out of 134 K.pneumoniae isolates harboring blaCTX-M and provided a conserved promoter to blaCTX-M.A non-coding sequence preceded by kdpC and recF was identified in all of the blaSHV genes except blaSHV-12 and blaSHV-2a.IS26 was also found upstream of 1 blaCTX-M-15,10 blaSHV-1 strains,4 blaTEM-1 and all of the blaSHV-2,blaSHV-2a,blaSHV-5 and blaSHV-12.Eighty-seven of 91 strains harboring blaTEM-1 carried a copy of Tn2 and IS26-blaTEM-1 fragments were also detected in 4 strains.With respect to K.pneumoniae,the genetic environment of blaCTX-M-38,blaSHV-142 and blaTEM-135 were firstly elaborated,and four kinds of novel genetic environment of blaCTX-M-3,blaCTX-M-15 and blaTEM-1 have been detected as well.Conclusions Perfective implementation of the genetic environment information of β-lactamase gene needs to be further explored and supplemented.ISEcp1 and IS26 elements are widespread upstream of the blaCTX-M,blaSHV and blaTEM genes and contribute to horizontal transmission and genetic expression.
基金supported by the Ministry of Higher Education under the Fundamental Research Grant Scheme(FRGS/1/2021/SKK0/UPM/02/8)the Universiti Putra Malaysia Research University Grant Scheme(GP/IPS/2021/9702000).
文摘Objective:To determine the distribution,phenotypic and genetic background of extended spectrumβ-lactamases(ESBL)-producing Klebsiella(K.)pneumoniae clinical isolates associated with K1 and K2 serotypes in two selected hospitals in Malaysia.Methods:A total of 192 K.pneumoniae isolates were collected and subjected to antibiotic susceptibility,hypermucoviscosity test and multiplex PCR to detect the presence of K1-and K2-serotype associated genes.Multilocus sequence typing(MLST)was performed on ESBL-producing K.pneumoniae isolates presented with K1 and K2 serotypes,followed by phylogenetic analysis.Results:A total of 87 out of 192(45.3%)of the K.pneumoniae isolates collected were ESBL producers.However,only 8.3%(16/192)and 10.9%(21/192)of the total isolates were detected to carry K1-and K2-serotype associated genes,respectively.Statistical analysis showed that K1 and K2 capsular serotypes were not significantly associated with ESBL phenotype(P=0.196).However,they were significantly associated with hypervirulent,as demonstrated by the positive string test(P<0.001).MLST analysis revealed that ST23 as the predominant sequence type(ST)in the K1 serotype,while the ST in the K2 serotype is more diverse.Conclusions:Although the occurrence of ESBL-producing isolates among the hypervirulent strains was low,their coexistence warrants the need for continuous surveillance.MLST showed that these isolates were genetically heterogeneous.
文摘To analyse the genotypes of clinical isolates of Extended-Spectrum-β-Lactamase-Producing (ESBL-producing) Proteus mirabilis (P. mirabilis) and the mechanisms of antimicrobial resistance, to guide reasonable use of antibiotics and to avoid nosocomial outbreak infections by ESBL-producing P. mirabilis. 125 clinical isolates of P. mirabilis were collected from the Drug-Resistant Bacteria Surveillance Center of Anhui Province (from Jan 2009 to May 2010). Searching for the genotypes of ESBLs was perfomed by PCR amplification and DNA sequencing, and performed conjugation test simultaneously. Among ESBL-producing strains, CTX-M was the major genotype (3 CTX-M-13 and 1 CTX-M-3). TEM-1b spectrum β-lactamase was also prevalence in P. mirabilis. The diversity of β-lactamases in P. mirabilis and the emergency of multi-drug-resistance clinical strains will present serious threat to clinical therapy and even will lead to outbreak of nosocomial infections. Our study emphasizes the need for enhanced supervision of ESBL-producing P. mirabilis. Timely and reasonable drug-resistance data are indispensable to clinical therapy.
基金This study was supported by the National Natural Science Foundation of China(30471307).
文摘The antibacterial activity of beta-lactam antibiotics or their combinations with inhibitor sulbactum against non-lactamase- producing strains, lactamase-producing and ESBLs-producing isolates was evaluated with twofold dilution method after pathogens isolated from pigs and chickens were detected, respectively, for beta-lactamase and extended-spectrum beta- lactamases (ESBLs), The results revealed that most of 43 clinically isolated strains could produce beta-lactamase and 3 strains of shigella isolated from chicken samples produced ESBLs. All of 30 lactamase-producing strains isolated and only one of 16 non-lactamase-producing strains were resistant to amoxicillin and ampicillin. MICs of ampicillin against lactamaseproducing isolates decreased 10-40 and 10-20 times respectively, when it was conbined with sulbactam at ration of 1:2 and 1:4. All clinical isolates were susceptible to third-generation cephalosporins. The MICs of third-generation cephalosporins against lactamase-producing isolates did not change when they were conbined with sulbactam. MICs of ceftiofur and ceftriaxone against ESBLs-producing isolates decreased 2-4 times when they were conbined with sulbactam.
文摘Background: Recently micro-organisms that synthesize extended-spectrum β-lactamase (ESBLs) were increased. The peculiarities of ESBL synthesis of Escherichia coli and Klebsiella pneumoniae strains that cause nosocomial urinary tract infections, surgical site infections and pneumonia in surgical clinic were studied. ESBL synthesis were observed 38.9% of E. coli strains obtained from urine, 92.3% of strains obtained from surgical site infections, and 50% of strains obtained from sputum. ESBL synthesis were observed 37.5% of K. pneumoniae strains obtained from urine, 85.7% of strains obtained from surgical site infections, and 60% of strains obtained from sputum. Different levels of ESBL synthesize of E. coli and K. pneumoniae strains isolated from different pattern is discussed. Conclusion. ESBL synthesis is common in E. coli and K. pneumoniae strains, which cause nosocomial infections. The frequency of occurrence of ESBL s synthesis among of these strains depends on clinical forms of nosocomial infections.
文摘BACKGROUND Appendicitis, the inflammation of the appendix, is the most common abdominal surgical emergency requiring expedient surgical intervention. Extendedspectrum beta-lactamases(ESBLs) are bacterial enzymes that catalyse the degradation of the betalactam ring of penicillins and cephalosporins(but without carbapenemase activity), leading to resistance of these bacteria to beta-lactam antibiotics. Recent increases in incidence of ESBL-producing bacteria have caused alarm worldwide. Proportion estimates of ESBLEnterobacteriaceae hover around 46% in China, 42% in East Africa, 12% in Germany, and 8% in the United States.CASE SUMMARY The impact of ESBL-producing bacteria on appendiceal abscesses and consequent pelvic abscesses are yet to be examined in depth. A literature review using the search words "appendiceal abscesses" and "ESBL Escherichia coli(E. coli)" revealed very few cases involving ESBL E. coli in any capacity in the context of appendiceal abscesses. This report describes the clinical aspects of a patient with appendicitis whodeveloped a postoperative pelvic abscess infected with ESBL-producing E. coli. In this report, we discuss the risk factors for contracting ESBL E. coli infection in appendicitis and post-appendectomy pelvis abscesses. We also discuss our management approach for postappendectomy ESBL E. coli pelvic abscesses, including drainage, pathogen identification, and pathogen characterisation. When ESBL E. coli is confirmed, carbapenem antibiotics should be promptly administered, as was done efficaciously with this patient. Our report is the first one in a developed country involving ESBL E. coli related surgical complications in association with a routine laparoscopic appendectomy.CONCLUSION Our report is the first involving ESBL E. coli and appendiceal abscesses, and that too consequent to laparoscopic appendectomy.
文摘We report the very rare case of a huge appendical abscess with extended-spectrum beta-lactamase (ESBL)-producing Escherichia coli (E. coli) as the pathogen. There have been several reports of appendical infections such as appendicitis and appendical abscess caused by ESBL-producing bacteria in adults. The treatment of ESBL-producing E. coli infection is specific, and ESBL-producing bacteria have recently been reported as pathogens associated appendicitis in children. To the best of our knowledge, this is the second report of perforated appendicitis with abscess due to ESBL-producing E. coli. We discuss the diagnostic modalities and treatments for appendical abscess with ESBL-producing E. coli. and propose that the patients with perforated appendicitis and abscess formation due to ESBL-producing E. coli should be administered the antibiotic MEPM within 2 weeks to treat the abscess more effec-tively without producing other multidrug-resistant bacteria.
文摘The clinical and microbiologic characteristics of 34 patients with extended-spectrum β-lactamase (ESBL) positive E. coli isolated from blood were compared to 66 bacteremic patients with ESBL negative E. coli, from January 2007 through December 2009. Of the 21 ESBL positive isolates available for PCR analysis, 13 were positive for CTX-M, 8 for TEM, 4 for SHV β-lactamases, with 6 possessing multiple enzymes. Twenty of 34 (59%) ESBL-positive and 41 of 66 (62%) ESBL-negative blood isolates were considered community-associated. All but one isolate in both groups had MICs of ≤1.0 μg/ml to meropenem. However, when compared to ESBL-negative isolates, ESBL-positive isolates were more frequently resistant to levofloxacin, trimethoprim/sulfamethoxazole and had higher MICs to gentamicin, tobramycin and piperacillin/tazobactam. The use of intravenous and urinary catheters was strongly associated with the isolation of E. coli bloodstream isolates in both groups of patients. Although hospital stay was similar in both groups, appropriate therapy was given in 87% of patients with ESBL positive vs. 98% of patients with ESBL negative isolates and mortality was greater for patients with ESBL positive isolates (26% vs. 17%). Since a large proportion of E. coli blood isolates were ESBL-positive and community-associated, carbapenems should be considered as initial empiric therapy for such infections in our locale.
文摘Background: Extended-spectrum β-lactamases (ESBLs) are enzymes capable of hydrolyzing extended-spectrum cephalosporins, penicillins and monobactams but inactive against cephamycins and carbapenems. The ESBL-producing organisms are a breed of multidrug-resistant pathogens. Objectives: This study was aimed to determine the susceptibility pattern of ESBL-producing Escherichia coli to ciprofloxacin, amikacin and imipenem. Methods: A total of 75 ESBL-producing E. coli, were obtained from the tertiary care hospitals of Bangladesh and were studied for susceptibility pattern from October, 2010 to December, 2011. These isolates were identified by double disc synergy test (DDST) and were confirmed phenotypically as ESBL-producer by phenotypic confirmatory disc diffusion test (PCDDT). Minimum inhibitory concentrations (MICs) of ciprofloxacin, amikacin and imipenem among ESBL-producing E. coli were determined using agar dilution method. Results: Out of 75 DDST positive ESBL-producing E. coli, 71 (94.67%) were also positive by PCDDT. All ESBL-producing E. coli, were susceptible to imipenem. About 92.95% ESBL-producing E. coli were susceptible to amikacin but only 14.08% were susceptible to ciprofloxacin. Conclusion: In this study, ESBL-producing E. coli, showed high resistance to ciprofloxacin. Imipenem and amikacin were most effective against ESBL positive strains.
文摘Background: Multidrug resistance and production of extended spectrum β-lactamases (ESBLs) by a large group of bacterial agents in hospitals are to be a matter of scientific concern. Objective: This cross-sectional study was aimed to investigate the prevalence of ESBL producing Proteus species and risk factors associated with hospital acquired infection in addition to study the antibiotics susceptibility patterns of all bacterial isolates from inpatients of four Yemeni general hospitals. Methods: A total of 740 consecutive non-repeat culture isolates were obtained from admitted patients of Al-Kuwait University Hospital, Al-Thowra General Hospital, Al-Jumhori Teaching Hospital, and Military General Hospitals Sana’a city. We used Kirby-Bauer disk diffusion method to detect antimicrobial susceptibility and establish the presence of ESBLs-producing bacteria according to the Clinical and Laboratory Standards Institute guidelines. Results: Out of 740 isolate, 233 (31.5%) were Escherichia coli followed by Staphylococcus aureus 188 (25.4%), Pseudomonas aeruginosa 149 (20.1%), Klebsiella sp. 107 (14.5%), Enterococcus faecalis 25 (3.4%) and Proteus spp. 38 (5.1%). The highest frequencies of ESBLs producing among Proteus sp. were Proteus mirabilis 26 out 38 (68.4%) and Proteus vulgaris 12 out 38 (31.6%). The most effective of antimicrobial susceptibility pattern among Proteus spp. were Imipenem (100%) followed by Pipracillin-Tazobactam (92.3%) for P. mirabilis and (83.3%) for P. vulgaris, while the Amikacin (80.8%) for P. mirabilis and P. vulgaris with (91.7%). Amoxicillin and Cefotaxime were the highest for both species (100%). Conclusion: The prevalence of ESBL-producing Proteus spp. detected in this study is of great concern for public health authorities and a strict adherence of infection control policies and procedures with continuous antibiotics resistance surveillance including antimicrobial management and routine detection of ESBL-producing isolates are very important to prevent nosocomial infections.
基金Supported by the Zabol University(Grant No.3214/45).
文摘Objective:To investigate the role of a rapid polymerase chain reaction(PCR)assay in comparison with traditional empiric therapy in detection of extended spectrum β-lactamase(ESBL)producer Escherichia coli(E.coli).Methods:Ninety isolates of E.coli from urinary tract infection were collected and screening of ESBL resistance using disc diffusion method,minimum inhibitory concentration(MIC)for ceftazidime and detection of TEM resistant gene by PCR were done.Results:The results of disc diffusion method showed that forty out of ninety E.coli isolates were ESBLs producing organisms.Antibiotic susceptibility of E.coli isolates to 9 antibacterial agents were evaluated.However,all isolated E.coli were resistant to all 9 antibacterial agents by these percentage:ceftriaxon(100%),ceftazidime(100%),amoxicillin(100%),erythromycin(100%),azithromycin(95%),cefixime(87.5%),tetracyclin(87.5%),nalidixic acid(85%)and difloxcain(75%).The abundance of antibiotic-resistant TEM gene according to PCR was 30%.Totally 82.5%of strains tested by MIC were observed as ceftazidime-resistant.Conclusions:We conclude that the TEM gene PCR assay is a rapid,sensitive and clinically useful test,particularly for the early detection of ESBLs-producing E.coli.
文摘The improper use of antimicrobials against infectious diseases has allowed microorganisms to develop defense mechanisms that give them insensitivity to these agents. All bacteria are concerned by this phenomenon. This work aimed to assess prevalence of beta-lactamase produced by enterobacterial isolates. Then, disc diffusion, double disc synergy test (DDST) and combined disc test (CDT) were respectively used for antimicrobial resistance, detection of Extended-Spectrum Beta-Lactamases (ESBL) and Metallo-Beta-Lactamases (MBL). bla genes were detected by PCR. A total of 132 enterobacterial strains were studied. Resistance to antibiotic families was observed with a greater frequency than 50%. Gentamicin was the least active beta-lactam antibiotic, with a resistance rate of 88%. 40.9% of strains show an ESBL phenotype and 16.6% were MBL. An overall prevalence of 74% (40/54) and respectively rates of 29.6%, 27.7% and 16.7% for blaSHV, blaCTX and blaTEM genes were observed. SHV, CTX, CTX/SHV/TEM, CTX/TEM, SHV/TEM and CTX/SHV were different ESBL genotypes observed. ESBL-producing enterobacteria isolation worried about the future of antimicrobial therapy in the Republic of Congo. This is a public health problem that requires careful monitoring and implementation of a policy of rational antibiotics use.
文摘Treatment of hospital acquired urinary tract infections (UTIs) caused by extended-spectrum beta-Lactamases producing Klebsiella pneumonae is a major problem. This organism expresses a high level of resistance to many groups of antibiotics. Fosfomycin is an agent which is recommended for treatment of UTIs caused by ESBLs producers. The aim of this study is to determine the sensitivity pattern of ESBLs producing urinary K. pneumonae to antimicrobial agents including fosfomycin in patients of MUHs and determine the prevalence of fosfomycin resistance mediated by plasmid mediated fosfomycin modifying enzymes fosA, fosB and fosA3. Methods: Klebsiella pneumonae urinary isolates were collected from patients with hospital acquired UTIs in Mansoura University Hospitals (MUHs). The susceptibility pattern was determined by Kirby Baur method. Isolates resistant to extended spectrum cephalosporins were tested for ESBLs production by double disc diffusion method. Fosfomycin resistance was determined by broth dilution method. Isolates resistant to fosfomycin were tested for fosA, fosB and fosA3 by PCR. Results: A total of 128 ESBLs producing K. pneumonae isolates were collected. The highest sensitivity was to imipenem (94.5%). The lowest was to trimethoprime-sulphamethoxazole (21.8%). Co-resistance of ESBLs isolates with fosfomycin was 23.2%. Eighteen fosfomycin resistant isolates (18/30) were positive to fosA. Conclusion: ESBLs producing urinary Klebsiella pneumonae express moderate sensitivity to fosfomycin. Resistance is mainly mediated by plasmid mediated fosfomycin modifying enzymes fosA.
文摘To investigate the prevalence and genotype of extended spectrum beta-lactamases (ESBLs) mediated by plasmid in Gram-negative bacteria found in southern China, a total of 1184 clinical isolates of non-repetitive strains of Gram-negative bacteria were collected in 2001 from 5 different cities in southern China. The ESBLs-producing isolates were distinguished by means of the phenotype confirmatory test based on the NCCLS criteria and were subjected to plasmid conjugation and electroporation experiments. Those clinical isolates succeeded in plasmid transfers had undergone plasmid conjugation and electro-transformation, plasmid DNA extraction and PstⅠ digest finger-printing analysis, as well as the universal primer PCR amplification of the TEM, SHV, CTX-M, VEB, PER and SFO genes and the DNA sequencing in order to determine the genotypes of ESBLs and their plasmid locations. It was found that the incidence of the ESBLs-producing strains of Gram-negative bacteria was 14.6% (173/1184) with 67 strains of transconjugants and 11 strains of electro-transformants, in which CTX-M-14 type was 33.3% (26/78); CTX-M-3 type was 23.1% (18/78); CTX-M-9 type was 14.1% (11/78); CTX-M-5 type was 6.4% ( 5/78); CTX-M-13 type was 2.6% (2/78); SHV-5 type was 7.7% (6/78); SHV-12 type was 5.1% (4/78), SHV-2a type was 2.6% (2/78) and unidentified type was 5.1% (4/78). 29.5% of the wild strains also carried broad-spectrum beta-lactamases TEM-1 and SHV-1 types. The above mentioned ESBLs genes were located on transferable plasmids with variable sizes (from 35 to 190?kb). The CTX-M type ESBLs was characterized by high-level of resistance to cefotaxime. It concluded that the CTX-M-type was the most prevalent genotype in clinical isolates of Gram-negative bacteria in southern China, and the SHV-type ranks in the second place. TEM-, VEB-, Toho- and PER-types were not found in these isolates.