Using European Centre for Medium-Range Weather Forecasts Reanalysis V5(ERA5)reanalysis data,this study investigated the reconstruction effects of various climate variabilities on surface wind speed in China from 1979 ...Using European Centre for Medium-Range Weather Forecasts Reanalysis V5(ERA5)reanalysis data,this study investigated the reconstruction effects of various climate variabilities on surface wind speed in China from 1979 to 2022.The results indicated that the reconstructed annual mean wind speed and the standard deviation of the annual mean wind speed,utilizing various climate variability indices,exhibited similar spatial modes to the reanalysis data,with spatial correlation coefficients of 0.99 and 0.94,respectively.In the reconstruction of six major wind power installed capacity provinces/autonomous regions in China,the effects were notably good for Hebei and Shanxi provinces,with the correlation coefficients for the interannual regional average wind speed time series being 0.65 and 0.64,respectively.The reconstruction effects of surface wind speed differed across seasons,with spring and summer reconstructions showing the highest correlation with reanalysis data.The correlation coefficients for all seasons across most regions in China ranged between 0.4 and 0.8.Among the reconstructed seasonal wind speeds for the six provinces/autonomous regions,Shanxi Province in spring exhibited the highest correlation with the reanalysis,with a coefficient of 0.61.The large-scale climate variability indices showed good reconstruction effects on the annual mean wind speed in China,and could explain the interannual variability trends of surface wind speed in most regions of China,particularly in the main wind energy provinces/autonomous regions.展开更多
Based on the tropical cyclone data from the Central Meteorological Observatory of China, Japan Meteorological Agency, Joint Typhoon Warning Center and European Centre for Medium-Range Weather Forecasts (ECMWF) durin...Based on the tropical cyclone data from the Central Meteorological Observatory of China, Japan Meteorological Agency, Joint Typhoon Warning Center and European Centre for Medium-Range Weather Forecasts (ECMWF) during the period of 2004 to 2009, three consensus methods are used in tropical cyclone (TC) track forecasts. Operational consensus results show that the objective forecasts of ECMWF help to improve consensus skill by 2%, 3%-5% and 3%-5%, decrease track bias by 2.5 kin, 6-9 km and 10-12 km for the 24 h, 48 h and 72 h forecasts respectively over the years of 2007 to 2009. Analysis also indicates that consensus forecasts hold positive skills relative to each member. The multivariate regression composite is a method that shows relatively low skill, while the methods of arithmetic averaging and composite (in which the weighting coefficient is the reciprocal square of mean error of members) have almost comparable skills among members. Consensus forecast for a lead time of 96 h has negative skill relative to the ECMWF objective forecast.展开更多
A continuous overcast-rainy weather(CORW) process occurred over the mid-lower reaches of the Yangtze River(MLRYR) in China from February 14 to March 9 in 2009,with a large stretch and long duration that was rarely see...A continuous overcast-rainy weather(CORW) process occurred over the mid-lower reaches of the Yangtze River(MLRYR) in China from February 14 to March 9 in 2009,with a large stretch and long duration that was rarely seen in historical records.Using the empirical orthogonal function(EOF),we analyzed the geopotential height anomaly field of the NCEP-DOE Reanalysis II in the same period,and defined the stable components of extended-range(10-30 days) weather forecast(ERWF).Furthermore,we defined anomalous and climatic stable components based on the variation characteristics of the variance contribution ratio of EOF components.The climatic stable components were able to explain the impact of climatically averaged information on the ERWF,and the anomalous stable components revealed the abnormal characteristics of the continuous overcast-rainy days.Our results show that the stable components,especially the anomalous stable components,can maintain the stability for a longer time(more than 10 days) and manifest as monthly scale low-frequency variation and ultra-long-wave activities.They also behave as ultra-long waves of planetary scale with a stable and vertically coherent structure,reflect the variation of general circulation in mid-high latitudes,display the cycle of the zonal circulation and the movement and adjustment of the ultra-long waves,and are closely linked to the surface CORW process.展开更多
Sensitivity analysis(SA) has been widely used to screen out a small number of sensitive parameters for model outputs from all adjustable parameters in weather and climate models, helping to improve model predictions b...Sensitivity analysis(SA) has been widely used to screen out a small number of sensitive parameters for model outputs from all adjustable parameters in weather and climate models, helping to improve model predictions by tuning the parameters. However, most parametric SA studies have focused on a single SA method and a single model output evaluation function, which makes the screened sensitive parameters less comprehensive. In addition, qualitative SA methods are often used because simulations using complex weather and climate models are time-consuming. Unlike previous SA studies, this research has systematically evaluated the sensitivity of parameters that affect precipitation and temperature simulations in the Weather Research and Forecasting(WRF) model using both qualitative and quantitative global SA methods. In the SA studies, multiple model output evaluation functions were used to conduct various SA experiments for precipitation and temperature. The results showed that five parameters(P3, P5, P7, P10, and P16) had the greatest effect on precipitation simulation results and that two parameters(P7 and P10) had the greatest effect for temperature. Using quantitative SA, the two-way interactive effect between P7 and P10 was also found to be important, especially for precipitation. The microphysics scheme had more sensitive parameters for precipitation, and P10(the multiplier for saturated soil water content) was the most sensitive parameter for both precipitation and temperature. From the ensemble simulations, preliminary results indicated that the precipitation and temperature simulation accuracies could be improved by tuning the respective sensitive parameter values, especially for simulations of moderate and heavy rain.展开更多
A quantitative scheme is put forward in our work of forecasting the storm rainfall of typhoons for specific sites.Using the initial parameters,weather situations and physical quantities as well as numerical weather pr...A quantitative scheme is put forward in our work of forecasting the storm rainfall of typhoons for specific sites.Using the initial parameters,weather situations and physical quantities as well as numerical weather prediction products,the scheme constructs multivariate,objective and similarity criteria for environmental factors for the time between the current and forthcoming moment within the domain of forecast.Through defining a non-linear similarity index,this work presents a comprehensive assessment of the similarity between historical samples of typhoons and those being forecast in terms of continuous dynamic states under the multivariate criteria in order to identify similar samples.The historical rainfall records of the similar samples are used to run weighted summarization of the similarity index to determine site-specific and quantitative forecasts of future typhoon rainfall.Samples resembling the typhoon being forecast are selected by defining a non-linear similarity index composed of multiple criteria.Trial tests have demonstrated that this scheme has positive prediction skill.展开更多
参照腾发量ET0的实时预测对实时灌溉预报很重要。通过对普通天气预报信息进行解析,取得可用的合理数据,利用Penm an-M on te ith方法估算了北京大兴试区近10年逐日参照腾发量,最后与由实测气象数据计算的结果进行了对比分析。结果表明:...参照腾发量ET0的实时预测对实时灌溉预报很重要。通过对普通天气预报信息进行解析,取得可用的合理数据,利用Penm an-M on te ith方法估算了北京大兴试区近10年逐日参照腾发量,最后与由实测气象数据计算的结果进行了对比分析。结果表明:解析气象因子与实测数据中,日照时数的相关系数为0.99,风速为0.90;t检验值日照时数为376.9042,风速为122.4295,远远大于t分布相应临界值2.576(α=0.01),表明其可以认为是来自一个近似的总体样本。由日最低气温确定的实际水汽压和由实测相对湿度计算的实际水汽压,二者相关系数达到0.93,t检验值为153.3015。运用天气预报信息计算预测的ET0与实测数据用Penm an-M on te ith方法计算的ET0相比,相关系数达到0.9613,t检验值为209.1194,说明二者具有高度显著的线性相关性。如果日常天气预报准确度能够达到90%以上,用此理论预测参照腾发量将具有较大的参考价值和实际意义。展开更多
基金the National Natural Science Foundation of China(42176243)。
文摘Using European Centre for Medium-Range Weather Forecasts Reanalysis V5(ERA5)reanalysis data,this study investigated the reconstruction effects of various climate variabilities on surface wind speed in China from 1979 to 2022.The results indicated that the reconstructed annual mean wind speed and the standard deviation of the annual mean wind speed,utilizing various climate variability indices,exhibited similar spatial modes to the reanalysis data,with spatial correlation coefficients of 0.99 and 0.94,respectively.In the reconstruction of six major wind power installed capacity provinces/autonomous regions in China,the effects were notably good for Hebei and Shanxi provinces,with the correlation coefficients for the interannual regional average wind speed time series being 0.65 and 0.64,respectively.The reconstruction effects of surface wind speed differed across seasons,with spring and summer reconstructions showing the highest correlation with reanalysis data.The correlation coefficients for all seasons across most regions in China ranged between 0.4 and 0.8.Among the reconstructed seasonal wind speeds for the six provinces/autonomous regions,Shanxi Province in spring exhibited the highest correlation with the reanalysis,with a coefficient of 0.61.The large-scale climate variability indices showed good reconstruction effects on the annual mean wind speed in China,and could explain the interannual variability trends of surface wind speed in most regions of China,particularly in the main wind energy provinces/autonomous regions.
基金National Natural Science Foundation of Ningbo City(2013A610124)Ningbo Planning Project of Science and Technology(2012C50044)Nanhai Disaster Mitigation Fund of Hainan Provincial Meteorological Bureau(NH2008ZY02)
文摘Based on the tropical cyclone data from the Central Meteorological Observatory of China, Japan Meteorological Agency, Joint Typhoon Warning Center and European Centre for Medium-Range Weather Forecasts (ECMWF) during the period of 2004 to 2009, three consensus methods are used in tropical cyclone (TC) track forecasts. Operational consensus results show that the objective forecasts of ECMWF help to improve consensus skill by 2%, 3%-5% and 3%-5%, decrease track bias by 2.5 kin, 6-9 km and 10-12 km for the 24 h, 48 h and 72 h forecasts respectively over the years of 2007 to 2009. Analysis also indicates that consensus forecasts hold positive skills relative to each member. The multivariate regression composite is a method that shows relatively low skill, while the methods of arithmetic averaging and composite (in which the weighting coefficient is the reciprocal square of mean error of members) have almost comparable skills among members. Consensus forecast for a lead time of 96 h has negative skill relative to the ECMWF objective forecast.
基金supported by National Natural Science Foundation of China (Grant No.40930952)Science and Technology Supporting Project (Grant No.2009BAC51B04)
文摘A continuous overcast-rainy weather(CORW) process occurred over the mid-lower reaches of the Yangtze River(MLRYR) in China from February 14 to March 9 in 2009,with a large stretch and long duration that was rarely seen in historical records.Using the empirical orthogonal function(EOF),we analyzed the geopotential height anomaly field of the NCEP-DOE Reanalysis II in the same period,and defined the stable components of extended-range(10-30 days) weather forecast(ERWF).Furthermore,we defined anomalous and climatic stable components based on the variation characteristics of the variance contribution ratio of EOF components.The climatic stable components were able to explain the impact of climatically averaged information on the ERWF,and the anomalous stable components revealed the abnormal characteristics of the continuous overcast-rainy days.Our results show that the stable components,especially the anomalous stable components,can maintain the stability for a longer time(more than 10 days) and manifest as monthly scale low-frequency variation and ultra-long-wave activities.They also behave as ultra-long waves of planetary scale with a stable and vertically coherent structure,reflect the variation of general circulation in mid-high latitudes,display the cycle of the zonal circulation and the movement and adjustment of the ultra-long waves,and are closely linked to the surface CORW process.
基金supported by the Special Fund for Meteorological Scientific Research in the Public Interest (Grant No. GYHY201506002, CRA40: 40-year CMA global atmospheric reanalysis)the National Basic Research Program of China (Grant No. 2015CB953703)+1 种基金the Intergovernmental Key International S & T Innovation Cooperation Program (Grant No. 2016YFE0102400)the National Natural Science Foundation of China (Grant Nos. 41305052 & 41375139)
文摘Sensitivity analysis(SA) has been widely used to screen out a small number of sensitive parameters for model outputs from all adjustable parameters in weather and climate models, helping to improve model predictions by tuning the parameters. However, most parametric SA studies have focused on a single SA method and a single model output evaluation function, which makes the screened sensitive parameters less comprehensive. In addition, qualitative SA methods are often used because simulations using complex weather and climate models are time-consuming. Unlike previous SA studies, this research has systematically evaluated the sensitivity of parameters that affect precipitation and temperature simulations in the Weather Research and Forecasting(WRF) model using both qualitative and quantitative global SA methods. In the SA studies, multiple model output evaluation functions were used to conduct various SA experiments for precipitation and temperature. The results showed that five parameters(P3, P5, P7, P10, and P16) had the greatest effect on precipitation simulation results and that two parameters(P7 and P10) had the greatest effect for temperature. Using quantitative SA, the two-way interactive effect between P7 and P10 was also found to be important, especially for precipitation. The microphysics scheme had more sensitive parameters for precipitation, and P10(the multiplier for saturated soil water content) was the most sensitive parameter for both precipitation and temperature. From the ensemble simulations, preliminary results indicated that the precipitation and temperature simulation accuracies could be improved by tuning the respective sensitive parameter values, especially for simulations of moderate and heavy rain.
基金Specialized Research Project for Social Welfare from Ministry of Science and Technology of China (2005DIB3J104)Science and Technology Planning Project for Zhejiang Province (2007C23065)
文摘A quantitative scheme is put forward in our work of forecasting the storm rainfall of typhoons for specific sites.Using the initial parameters,weather situations and physical quantities as well as numerical weather prediction products,the scheme constructs multivariate,objective and similarity criteria for environmental factors for the time between the current and forthcoming moment within the domain of forecast.Through defining a non-linear similarity index,this work presents a comprehensive assessment of the similarity between historical samples of typhoons and those being forecast in terms of continuous dynamic states under the multivariate criteria in order to identify similar samples.The historical rainfall records of the similar samples are used to run weighted summarization of the similarity index to determine site-specific and quantitative forecasts of future typhoon rainfall.Samples resembling the typhoon being forecast are selected by defining a non-linear similarity index composed of multiple criteria.Trial tests have demonstrated that this scheme has positive prediction skill.
文摘参照腾发量ET0的实时预测对实时灌溉预报很重要。通过对普通天气预报信息进行解析,取得可用的合理数据,利用Penm an-M on te ith方法估算了北京大兴试区近10年逐日参照腾发量,最后与由实测气象数据计算的结果进行了对比分析。结果表明:解析气象因子与实测数据中,日照时数的相关系数为0.99,风速为0.90;t检验值日照时数为376.9042,风速为122.4295,远远大于t分布相应临界值2.576(α=0.01),表明其可以认为是来自一个近似的总体样本。由日最低气温确定的实际水汽压和由实测相对湿度计算的实际水汽压,二者相关系数达到0.93,t检验值为153.3015。运用天气预报信息计算预测的ET0与实测数据用Penm an-M on te ith方法计算的ET0相比,相关系数达到0.9613,t检验值为209.1194,说明二者具有高度显著的线性相关性。如果日常天气预报准确度能够达到90%以上,用此理论预测参照腾发量将具有较大的参考价值和实际意义。