Horsetailing is an important feature to identify the strike-slip structure and indicates the movement mode of the fault.However,the formation mechanism of horsetailing in the extensional regime remains unclear.In this...Horsetailing is an important feature to identify the strike-slip structure and indicates the movement mode of the fault.However,the formation mechanism of horsetailing in the extensional regime remains unclear.In this study,the formation process of horsetailing is reproduced through physical experiment,simulating the Linnan sag in the extensional regime.The results of the physical experiment demonstrates that the formation of the horsetailing in the extensional regime requires two phases of non-coaxial stretching plus the segment of the principal fault.The stretching distance in the early phase is slightly smaller than that in the middle-late phase.The segment point of the principal fault is only the intersection of the horsetailing structure and the principal fault.The horsetailing formed in the extensional regime is different from that in the strike-slip regime.For the formation of structure,the principal fault is dip-slip in the early phase and then becomes an oblique-slip in the middle-late phase,and the horsetailing is composed of the middle-late new tensile faults.The fault properties of the horsetailing in the extensional regime has important guiding significance for the longitudinal fluid migration along the fault in petroliferous basins.展开更多
The main purpose of this research article is to evaluate the structural styles and hydrocarbon potential of Miano Block using seismic and well log data. The Miano Block discovered in 1993 is located in the Central Ind...The main purpose of this research article is to evaluate the structural styles and hydrocarbon potential of Miano Block using seismic and well log data. The Miano Block discovered in 1993 is located in the Central Indus Basin which is a part of an extensional regime exhibiting normal faulting, formed as a result of split of the Indian Plate firstly from Africa and then from Madagascar and Seychelles. Tectonically, the Miano Block lies on the Panno-Aqil graben between two extensive regional highs i.e. Jacobabad-Khairpur High and Mari Kandhkot High. Four migrated seismic lines were used for structural enhancement;P2092-111, P2092-113 and P2092-115 (dip lines) and P2092-110 (strike line). Time and depth contours were generated for four horizons, HabibRahi Formation, Sui Main Limestone, Ranikot Formation and Lower Goru Formation which showed the presence of horst and graben structures in the subsurface. The interpretation of horst and graben structures is based on a parallel set of NS-oriented high-angle planar normal faults with dips either towards SE or SW with majority of the faults dipping towards the SW. The faults are observed to exhibit slight disruption of strata with limited displacement to the order of about 50 m in Lower Goru Formation. Thus, horst and graben structures with NS trend in the study area are interpreted. The NS trend of these structures along with similar structural dip is inconsistent to the NW-SE orientation of regional structures i.e. Panno- Aqil graben and the Jacobabad-Kharipur and Mari-Kandhkot Highs indicating about the presence of a second minor set of faults and complexity of deformation. In this setting, Maino-02 well was drilled with the primary target as B-Sands of Lower Goru Formation belonging to Lower Cretaceous age while secondary target was A-Sands of Lower Goru belonging to the same age. The result of the petrophysical analysis supports two potential zones (zone 1 and zone 2) within the Lower Goru Formation. Potential reservoir zones were marked with average hydrocarbon saturation of zone 1 calculated as 63.5% and that of zone 2 as 68.9%.展开更多
A detailed investigation carried out, with the help of extensive simulations using the TCAD device simulator Sentaurus, with the aim of achieving an understanding of the effects of variations in gate and drain potenti...A detailed investigation carried out, with the help of extensive simulations using the TCAD device simulator Sentaurus, with the aim of achieving an understanding of the effects of variations in gate and drain potentials on the device characteristics of a silicon double-gate tunnel field effect transistor(Si-DG TFET) is reported in this paper. The investigation is mainly aimed at studying electrical properties such as the electric potential, the electron density, and the electron quasi-Fermi potential in a channel. From the simulation results, it is found that the electrical properties in the channel region of the DG TFET are different from those for a DG MOSFET. It is observed that the central channel potential of the DG TFET is not pinned to a fixed potential even after the threshold is passed(as in the case of the DG MOSFET); instead, it initially increases and later on decreases with increasing gate voltage, and this is also the behavior exhibited by the surface potential of the device. However, the drain current always increases with the applied gate voltage. It is also observed that the electron quasi-Fermi potential(e QFP)decreases as the channel potential starts to decrease, and there are hiphops in the channel e QFP for higher applied drain voltages. The channel regime resistance is also observed for higher gate length, which has a great effect on the I–V characteristics of the DG TFET device. These channel regime electrical properties will be very useful for determining the tunneling current; thus these results may have further uses in developing analytical current models.展开更多
文摘Horsetailing is an important feature to identify the strike-slip structure and indicates the movement mode of the fault.However,the formation mechanism of horsetailing in the extensional regime remains unclear.In this study,the formation process of horsetailing is reproduced through physical experiment,simulating the Linnan sag in the extensional regime.The results of the physical experiment demonstrates that the formation of the horsetailing in the extensional regime requires two phases of non-coaxial stretching plus the segment of the principal fault.The stretching distance in the early phase is slightly smaller than that in the middle-late phase.The segment point of the principal fault is only the intersection of the horsetailing structure and the principal fault.The horsetailing formed in the extensional regime is different from that in the strike-slip regime.For the formation of structure,the principal fault is dip-slip in the early phase and then becomes an oblique-slip in the middle-late phase,and the horsetailing is composed of the middle-late new tensile faults.The fault properties of the horsetailing in the extensional regime has important guiding significance for the longitudinal fluid migration along the fault in petroliferous basins.
文摘The main purpose of this research article is to evaluate the structural styles and hydrocarbon potential of Miano Block using seismic and well log data. The Miano Block discovered in 1993 is located in the Central Indus Basin which is a part of an extensional regime exhibiting normal faulting, formed as a result of split of the Indian Plate firstly from Africa and then from Madagascar and Seychelles. Tectonically, the Miano Block lies on the Panno-Aqil graben between two extensive regional highs i.e. Jacobabad-Khairpur High and Mari Kandhkot High. Four migrated seismic lines were used for structural enhancement;P2092-111, P2092-113 and P2092-115 (dip lines) and P2092-110 (strike line). Time and depth contours were generated for four horizons, HabibRahi Formation, Sui Main Limestone, Ranikot Formation and Lower Goru Formation which showed the presence of horst and graben structures in the subsurface. The interpretation of horst and graben structures is based on a parallel set of NS-oriented high-angle planar normal faults with dips either towards SE or SW with majority of the faults dipping towards the SW. The faults are observed to exhibit slight disruption of strata with limited displacement to the order of about 50 m in Lower Goru Formation. Thus, horst and graben structures with NS trend in the study area are interpreted. The NS trend of these structures along with similar structural dip is inconsistent to the NW-SE orientation of regional structures i.e. Panno- Aqil graben and the Jacobabad-Kharipur and Mari-Kandhkot Highs indicating about the presence of a second minor set of faults and complexity of deformation. In this setting, Maino-02 well was drilled with the primary target as B-Sands of Lower Goru Formation belonging to Lower Cretaceous age while secondary target was A-Sands of Lower Goru belonging to the same age. The result of the petrophysical analysis supports two potential zones (zone 1 and zone 2) within the Lower Goru Formation. Potential reservoir zones were marked with average hydrocarbon saturation of zone 1 calculated as 63.5% and that of zone 2 as 68.9%.
文摘A detailed investigation carried out, with the help of extensive simulations using the TCAD device simulator Sentaurus, with the aim of achieving an understanding of the effects of variations in gate and drain potentials on the device characteristics of a silicon double-gate tunnel field effect transistor(Si-DG TFET) is reported in this paper. The investigation is mainly aimed at studying electrical properties such as the electric potential, the electron density, and the electron quasi-Fermi potential in a channel. From the simulation results, it is found that the electrical properties in the channel region of the DG TFET are different from those for a DG MOSFET. It is observed that the central channel potential of the DG TFET is not pinned to a fixed potential even after the threshold is passed(as in the case of the DG MOSFET); instead, it initially increases and later on decreases with increasing gate voltage, and this is also the behavior exhibited by the surface potential of the device. However, the drain current always increases with the applied gate voltage. It is also observed that the electron quasi-Fermi potential(e QFP)decreases as the channel potential starts to decrease, and there are hiphops in the channel e QFP for higher applied drain voltages. The channel regime resistance is also observed for higher gate length, which has a great effect on the I–V characteristics of the DG TFET device. These channel regime electrical properties will be very useful for determining the tunneling current; thus these results may have further uses in developing analytical current models.