In this paper,we investigate the method of fundamental solutions(MFS)for solving exterior Helmholtz problems with high wave-number in axisymmetric domains.Since the coefficientmatrix in the linear system resulting fro...In this paper,we investigate the method of fundamental solutions(MFS)for solving exterior Helmholtz problems with high wave-number in axisymmetric domains.Since the coefficientmatrix in the linear system resulting fromtheMFS approximation has a block circulant structure,it can be solved by the matrix decomposition algorithm and fast Fourier transform for the fast computation of large-scale problems and meanwhile saving computer memory space.Several numerical examples are provided to demonstrate its applicability and efficacy in two and three dimensional domains.展开更多
基金The work described in this paper was supported by National Basic Research Program of China(973 Project No.2010CB832702)the R&D Special Fund for Public Welfare Industry(Hydrodynamics,Project No.201101014 and the 111 project under grant B12032)National Science Funds for Distinguished Young Scholars(Grant No.11125208).The third author acknowledges the support of Distinguished Overseas Visiting Scholar Fellowship provided by the Ministry of Education of China.
文摘In this paper,we investigate the method of fundamental solutions(MFS)for solving exterior Helmholtz problems with high wave-number in axisymmetric domains.Since the coefficientmatrix in the linear system resulting fromtheMFS approximation has a block circulant structure,it can be solved by the matrix decomposition algorithm and fast Fourier transform for the fast computation of large-scale problems and meanwhile saving computer memory space.Several numerical examples are provided to demonstrate its applicability and efficacy in two and three dimensional domains.