This paper proposes an adaptive nonlinear proportional-derivative(ANPD)controller for a two-wheeled self-balancing robot(TWSB)modeled by the Lagrange equation with external forces.The proposed control scheme is design...This paper proposes an adaptive nonlinear proportional-derivative(ANPD)controller for a two-wheeled self-balancing robot(TWSB)modeled by the Lagrange equation with external forces.The proposed control scheme is designed based on the combination of a nonlinear proportional-derivative(NPD)controller and a genetic algorithm,in which the proportional-derivative(PD)parameters are updated online based on the tracking error and the preset error threshold.In addition,the genetic algorithm is employed to adaptively select initial controller parameters,contributing to system stability and improved control accuracy.The proposed controller is basic in design yet simple to implement.The ANPD controller has the advantage of being computationally lightweight and providing high robustness against external forces.The stability of the closed-loop system is rigorously analyzed and verified using Lyapunov theory,providing theoretical assurance of its robustness.Simulations and experimental results show that the TWSB robot with the proposed ANPD controller achieves quick balance and tracks target values with very small errors,demonstrating the effectiveness and performance of the proposed controller.The proposed ANPD controller demonstrates significant improvements in balancing and tracking performance for two-wheeled self-balancing robots,which has great applicability in the field of robot control systems.This represents a promising solution for applications requiring precise and stable motion control under varying external conditions.展开更多
Schrödinger equations are very common equations in physics and mathematics for nonlinear physics to model the dynamics of wave propagation in waveguides such as power lines, atomic chains, optical fibers, and eve...Schrödinger equations are very common equations in physics and mathematics for nonlinear physics to model the dynamics of wave propagation in waveguides such as power lines, atomic chains, optical fibers, and even in quantum mechanics. But all these equations are most often studied without worrying about what would happen if this equation were maintained, that is to say, had a second member synonymous with an external force. It is true that on a physical level, such equations can be considered as describing the generation of waves on a waveguide using an external force. However, the in-depth analysis of this aspect is not at the center of our reflection in this article, but for us, it is a question of proposing exact solutions to this type of equation and above all proposing the general form of the external force so that the obtaining exact solutions is possible.展开更多
The duplication of animal models plays a key role in spinal cord injury research; however, there has been limited study into normal, external force-derived fracture dislocation. This study adopted experimental devices...The duplication of animal models plays a key role in spinal cord injury research; however, there has been limited study into normal, external force-derived fracture dislocation. This study adopted experimental devices, designed in-house, to construct standardized ventral and dorsal spinal cord injury animal models of 6 g and 17 g falling from a height of 2, 4, and 10 cm, and 15, 30 or 50 g transversal compression on the spinal cord. The results showed that gradual increases in the degree of histopathological injury led to decreased Tarlov and Basso, Beattie and Bresnahan scores for the behavioral test, and increased Ashworth scores for the hind limb. Furthermore, there was a gradual decline in the slope test in the rats with dorsal spinal cord injury that correlated to increases in the falling substance weight or falling height. Similar alterations were observed in the ventral spinal cord injured rats, proportional to the increase in compression weight. Our experimental findings indicate that the standardized experimental rat models of dorsal and ventral spinal cord injury are stable, reliable and reproducible.展开更多
This paper is joint with [27]. The authors prove in this article the existence and reveal its structure of uniform attractor for a two-dimensional nonautonomous incompressible non-Newtonian fluid with a new class of e...This paper is joint with [27]. The authors prove in this article the existence and reveal its structure of uniform attractor for a two-dimensional nonautonomous incompressible non-Newtonian fluid with a new class of external forces.展开更多
Almost all climate time series have some degree of nonstationarity due to external forces of the observed system. Therefore, these external forces should be taken into account when reconstructing the climate dy- namic...Almost all climate time series have some degree of nonstationarity due to external forces of the observed system. Therefore, these external forces should be taken into account when reconstructing the climate dy- namics. This paper presents a novel technique in predicting nonstationary time series. The main difference of this new technique from some previous methods is that it incorporates the driving forces in the pre- diction model. To appraise its effectiveness, three prediction experiments were carried out using the data generated from some known classical dynamical models and a climate model with multiple external forces. Experimental results indicate that this technique is able to improve the prediction skill effectively.展开更多
Evolution of spatial distribution of charged particulates under the action of an external force is investigated. It is found that starting from a homogeneous Maxwellian distribution of particulates, clusters can form ...Evolution of spatial distribution of charged particulates under the action of an external force is investigated. It is found that starting from a homogeneous Maxwellian distribution of particulates, clusters can form and aggregate. The evolution process, as well as the asymptotic number and configuration of the clusters formed, depends strongly on the strength of the external force. The particulates in most of the final clusters are in the crystal state, as can also be deduced from the corresponding velocity and auto-correlation functions.展开更多
Accurate quantification of external force is the key to improve the high-precision hemming of autobody closure panels.However,the mechanism of external force on forming quality of complex contour sheet metal with adhe...Accurate quantification of external force is the key to improve the high-precision hemming of autobody closure panels.However,the mechanism of external force on forming quality of complex contour sheet metal with adhesive is not clear subjected to geometric curvature and materials.In the present study,taking the curved edge aluminum sheet as the research object,SPH(smooth particle hydrodynamics)is introduced to simulate the viscous adhesive,and the SPH-FEM(Finite element method)coupling model of adhesive and panels considering the viscosity-pressure effect is established.The numerical simulation of the roller hemming process is carried out,then the validity and reliability of the proposed method are verified by measuring the external force in real time using triaxial force sensor.The multi-step forming process and the effect of external force on the roll in/out,surface wave and plastic strain of aluminum alloy sheet under the viscosity-pressure effect are studied,and the relationship between process parameters and external force is discussed.Results show that the coupling SPH-FEM model can well reflect the hemming process of curved edge structure.The normal force is about 2–3 times of the tangential force in the pre and final hemming process.Compared with the case without adhesive,the surface wave of flange part of the hemming with adhesive is slightly larger.The normal force and the tangential force increase about 90 N and 30 N respectively,when the height increases by 1 mm.It provides an important basis for the accurate control of hemming trajectory and the improvement of manufacturing quality of autobody closure panels.展开更多
According to the biomechanic theory and method, the dynamic mechanism of crop growth under the external force action of multi_environment factors (light, temperature,soil and nutrients etc.) was comprehensively explor...According to the biomechanic theory and method, the dynamic mechanism of crop growth under the external force action of multi_environment factors (light, temperature,soil and nutrients etc.) was comprehensively explored.Continuous_time Markov(CTM) approach was adopted to build the dynamic model of the crop growth system and the simulated numerical method. The growth rate responses to the variation of the external force and the change of biomass saturation value were studied. The crop grew in the semiarid area was taken as an example to carry out the numerical simulation analysis, therefore the results provide the quantity basis for the field management. Comparing the dynamic model with the other plant growth model, the superiority of the former is that it displays multi_dimension of resource utilization by means of combining macroscopic with microcosmic and reveals the process of resource transition. The simulation method of crop growth system is advanced and manipulated. A real simulation result is well identical with field observational results.展开更多
Evolution of the charged grains in a two-dimensional dusty plasma under a spatially harmonic external force,in particular,their long-time behaviors after the force has been withdrawn,is studied by using molecular dyna...Evolution of the charged grains in a two-dimensional dusty plasma under a spatially harmonic external force,in particular,their long-time behaviors after the force has been withdrawn,is studied by using molecular dynamics simulation.Under an external force and a grain–grain interaction force,initially homogeneously distributed grains can reach a quasistationary state in the form of a disk crystal.After the external force is withdrawn,the disk moves initially with its size and shape nearly unchanged until it rapidly stops moving,and eventually the disk grain rotates like a vortex.The time needed to reach the final state increases with the strength of the initial external force increasing.展开更多
The relationship between the partition ratio at a solid-liquid interface and the temperature gradient or the external force field has been theoretically analysed.It is shown that under the influence of a temperature g...The relationship between the partition ratio at a solid-liquid interface and the temperature gradient or the external force field has been theoretically analysed.It is shown that under the influence of a temperature gradient or an external force field,the partition ratio at a solid-liquid interface will deviate from the equilibrium value.展开更多
In this paper, the Cauchy problem for the inelastic Boltzmann equation with external force is considered in the case of initial data with infinite energy. More precisely, under the assumptions on the bicharacteristic ...In this paper, the Cauchy problem for the inelastic Boltzmann equation with external force is considered in the case of initial data with infinite energy. More precisely, under the assumptions on the bicharacteristic generated by external force, we prove the global existence of solution for small initial data compared to the local Maxwellian exp(-p|x - v|^2), which has infinite mass and energy.展开更多
For the Boltzmann equation with an external force in the form of the gradient of a potential function in space variable, the stability of its stationary solutions as local Maxwellians was studied by S. Ukai et al. (2...For the Boltzmann equation with an external force in the form of the gradient of a potential function in space variable, the stability of its stationary solutions as local Maxwellians was studied by S. Ukai et al. (2005) through the energy method. Based on this stability analysis and some techniques on analyzing the convergence rates to stationary solutions for the compressible Navier-Stokes equations, in this paper, we study the convergence rate to the above stationary solutions for the Boltzmann equation which is a fundamental equation in statistical physics for non-equilibrium rarefied gas. By combining the dissipation from the viscosity and heat conductivity on the fluid components and the dissipation on the non-fluid component through the celebrated H-theorem, a convergence rate of the same order as the one for the compressible Navier-Stokes is obtained by constructing some energy functionals.展开更多
We prove the asymptotic properties of the solutions to the 3D Navier–Stokes system with singular external force, by making use of Fourier localization method, the Littlewood–Paley theory and some subtle estimates in...We prove the asymptotic properties of the solutions to the 3D Navier–Stokes system with singular external force, by making use of Fourier localization method, the Littlewood–Paley theory and some subtle estimates in Fourier–Herz space. The main idea of the proof is motivated by that of Cannone et al. [J. Differential Equations, 314, 316–339(2022)]. We deal either with the nonstationary problem or with the stationary problem where solution may be singular due to singular external force. In this paper, the Fourier–Herz space includes the function space of pseudomeasure type used in Cannone et al. [J. Differential Equations, 314, 316–339(2022)]展开更多
A classical particle system coupled with a thermostat driven by an external constant force reaches its steady state when the ensemble-averaged drift velocity does not vary with time.In this work,the statistical mechan...A classical particle system coupled with a thermostat driven by an external constant force reaches its steady state when the ensemble-averaged drift velocity does not vary with time.In this work,the statistical mechanics of such a system is derived solely based on the equiprobability and ergodicity principles,free from any conclusions drawn on equilibrium statistical mechanics or local equilibrium hypothesis.The momentum space distribution is determined by a random walk argument,and the position space distribution is determined by employing the equiprobability and ergodicity principles.The expressions for energy,entropy,free energy,and pressures are then deduced,and the relation among external force,drift velocity,and temperature is also established.Moreover,the relaxation towards its equilibrium is found to be an exponentially decaying process obeying the minimum entropy production theorem.展开更多
This paper establishes the global existence of classical solution to the system of homogeneous,isotropic hyperelasticity with time-independent external force,provided that the nonlinear term obeys a type of null condi...This paper establishes the global existence of classical solution to the system of homogeneous,isotropic hyperelasticity with time-independent external force,provided that the nonlinear term obeys a type of null condition.The authors first prove the existence and uniqueness of the stationary solution.Then they show that the solution to the dynamical system converges to the stationary solution as time goes to infinity.展开更多
We report the oscillating propagation of kink in a nondissipative Frenkel-Kontorova (FK) chain driven by external DC force, which is different from the usual propagation of localized modes with equal speed. When the...We report the oscillating propagation of kink in a nondissipative Frenkel-Kontorova (FK) chain driven by external DC force, which is different from the usual propagation of localized modes with equal speed. When the kink moves in the opposite direction of the external DC force, the kink will be accelerated and the potential of the FK chain in the external force field is transformed to be the kinetic energy of the kink. If the kink reaches the boundary of the FK chain, the kink will be bounced back and moves in the opposite direction, then the kink will be decelerated gradually and the kinetic energy of the kink & transformed to be the potential of the FK chain in the external force field. If the speed of the kink reaches zero, the kink will move in the opposite direction again driven by the external DC force, and a new oscillating cycle begins. Simulation result demonstrates exactly the transformation between the kinetic energy of the kink and the potential of the FK chain in the external force field. The interesting energy exchange is induced by the special topology of kinks, and other localized modes, such as breathers and envelope solitons, have no the interesting phenomenon.展开更多
By introducing nonlinear frequency, using Floquet theory and referring to the characteristics of the solution when it passes through the transition boundaries, all kinds of bifurcation modes and their transition bound...By introducing nonlinear frequency, using Floquet theory and referring to the characteristics of the solution when it passes through the transition boundaries, all kinds of bifurcation modes and their transition boundaries of Duffing equation with two periodic excitations as well as the possible ways to chaos are studied in this paper.展开更多
For the viscous and heat-conductive fluids governed by the compressible Navier- Stokes equations with external force of general form in R^3, there exist nontrivial stationary solutions provided the external forces are...For the viscous and heat-conductive fluids governed by the compressible Navier- Stokes equations with external force of general form in R^3, there exist nontrivial stationary solutions provided the external forces are small in suitable norms, which was studied in article [15], and there we also proved the global in time stability of the stationary solutions with respect to initial data in H^3-framework. In this article, the authors investigate the rates of convergence of nonstationary solutions to the corresponding stationary solutions when the initial data are small in H^3 and bounded in L6/5.展开更多
In the course of studying on aerodynamic change and its effect on steering stability and controllability of an automobile in passing, because of multi interaction streams, it is difficult to use traditional methods, s...In the course of studying on aerodynamic change and its effect on steering stability and controllability of an automobile in passing, because of multi interaction streams, it is difficult to use traditional methods, such as wind tunnel test and road test. If the passing process of an automobile is divided into many time segments, so as to avoid the use of moving mesh which takes large calculation resource and CPU processing time in calculating, the segments are simulated with computational fluid dynamics (CFD) method, then the approximate computational results about external flow field will be obtained. On the basis of the idea, the change of external flow field of wagon-shaped car at the moment of passing is simulated through solving three-dimensional, steady and uncompressible N-S equations with finite volume method. Numerical simulation analysis of side force coefficient, stream lines, body surface pressure distribution of wagon-shaped car are presented and a preliminary discussion of aerodynamic characteristics of correlative situations is obtained. Finally, the C3 -x/l curve of side force coefficient(C3) of car following relative distance (x/l) between cars is obtained. By comparison, the curve is coincident well with the experimental data, which shows creditability of numerical simulation methods presented.展开更多
In spinal cord injuries,external forces from various directions occur at various velocities.Therefore,it is important to physically evaluate whether the spinal cord is susceptible to damage and an increase in internal...In spinal cord injuries,external forces from various directions occur at various velocities.Therefore,it is important to physically evaluate whether the spinal cord is susceptible to damage and an increase in internal stress for external forces.We hypothesized that the spinal cord has mechanical features that vary under stress depending on the direction and velocity of injury.However,it is difficult to perform experiment because the spinal cord is very soft.There are no reports on the effects of multiple external forces.In this study,we used bovine spinal cord white matter to test and analyze the anisotropy and velocity dependence of the spinal cord.Tensile-vertical,tensile-parallel,shear-vertical,and shear-parallel tests were performed on the white matter in the fibrous direction(cranial to caudal).Strain rate in the experiment was 0.1,1,10,and 100/s.We calculated the Young’s modulus of the spinal cord.Results of the tensile and shear tests revealed that stress tended to increase when external forces were applied parallel to the direction of axon fibers,such as in tensile-vertical and shear-vertical tests.However,external forces those tear against the fibrous direction and vertically,such as in tensile-parallel and shear-parallel tests,were less likely to increase stress even with increased velocity.We found that the spinal cord was prone to external forces,especially in the direction of the fibers,and to be under increased stress levels when the velocity of external forces increased.From these results,we confirmed that the spinal cord has velocity dependence and anisotropy.The Institutional Animal Care and Use Committee of Yamaguchi University waived the requirement for ethical approval.展开更多
文摘This paper proposes an adaptive nonlinear proportional-derivative(ANPD)controller for a two-wheeled self-balancing robot(TWSB)modeled by the Lagrange equation with external forces.The proposed control scheme is designed based on the combination of a nonlinear proportional-derivative(NPD)controller and a genetic algorithm,in which the proportional-derivative(PD)parameters are updated online based on the tracking error and the preset error threshold.In addition,the genetic algorithm is employed to adaptively select initial controller parameters,contributing to system stability and improved control accuracy.The proposed controller is basic in design yet simple to implement.The ANPD controller has the advantage of being computationally lightweight and providing high robustness against external forces.The stability of the closed-loop system is rigorously analyzed and verified using Lyapunov theory,providing theoretical assurance of its robustness.Simulations and experimental results show that the TWSB robot with the proposed ANPD controller achieves quick balance and tracks target values with very small errors,demonstrating the effectiveness and performance of the proposed controller.The proposed ANPD controller demonstrates significant improvements in balancing and tracking performance for two-wheeled self-balancing robots,which has great applicability in the field of robot control systems.This represents a promising solution for applications requiring precise and stable motion control under varying external conditions.
文摘Schrödinger equations are very common equations in physics and mathematics for nonlinear physics to model the dynamics of wave propagation in waveguides such as power lines, atomic chains, optical fibers, and even in quantum mechanics. But all these equations are most often studied without worrying about what would happen if this equation were maintained, that is to say, had a second member synonymous with an external force. It is true that on a physical level, such equations can be considered as describing the generation of waves on a waveguide using an external force. However, the in-depth analysis of this aspect is not at the center of our reflection in this article, but for us, it is a question of proposing exact solutions to this type of equation and above all proposing the general form of the external force so that the obtaining exact solutions is possible.
基金the National Natural Science Foundation of China for Youths, No.30901483the Natural Science Foundation of Shanxi Province for Youths,No. 2009021041-3Projects of Patent Promoteand Implementation of Shanxi Province, No.111009
文摘The duplication of animal models plays a key role in spinal cord injury research; however, there has been limited study into normal, external force-derived fracture dislocation. This study adopted experimental devices, designed in-house, to construct standardized ventral and dorsal spinal cord injury animal models of 6 g and 17 g falling from a height of 2, 4, and 10 cm, and 15, 30 or 50 g transversal compression on the spinal cord. The results showed that gradual increases in the degree of histopathological injury led to decreased Tarlov and Basso, Beattie and Bresnahan scores for the behavioral test, and increased Ashworth scores for the hind limb. Furthermore, there was a gradual decline in the slope test in the rats with dorsal spinal cord injury that correlated to increases in the falling substance weight or falling height. Similar alterations were observed in the ventral spinal cord injured rats, proportional to the increase in compression weight. Our experimental findings indicate that the standardized experimental rat models of dorsal and ventral spinal cord injury are stable, reliable and reproducible.
基金Sponsored by the NSFC (10901121,10826091 and 10771139)NSF for Postdoctors of China (20090460952)+2 种基金NSF of Zhejiang Province (Y6080077)NSF of Wenzhou University (2008YYLQ01)by the Zhejiang Youth Teacher Training Project and Wenzhou 551 Project
文摘This paper is joint with [27]. The authors prove in this article the existence and reveal its structure of uniform attractor for a two-dimensional nonautonomous incompressible non-Newtonian fluid with a new class of external forces.
基金supported by the National Natural Science Foundation of China under Grant Nos.40890052,41075061,and 41275087
文摘Almost all climate time series have some degree of nonstationarity due to external forces of the observed system. Therefore, these external forces should be taken into account when reconstructing the climate dy- namics. This paper presents a novel technique in predicting nonstationary time series. The main difference of this new technique from some previous methods is that it incorporates the driving forces in the pre- diction model. To appraise its effectiveness, three prediction experiments were carried out using the data generated from some known classical dynamical models and a climate model with multiple external forces. Experimental results indicate that this technique is able to improve the prediction skill effectively.
基金Supported by the Natural Science Foundation of Zhejiang Province under Grant No LY15A050001the National Natural Science Foundation of China under Grant Nos 11247007 and 11374262the Open Fund of the State Key Laboratory of High-Field Laser Physics at SIOM
文摘Evolution of spatial distribution of charged particulates under the action of an external force is investigated. It is found that starting from a homogeneous Maxwellian distribution of particulates, clusters can form and aggregate. The evolution process, as well as the asymptotic number and configuration of the clusters formed, depends strongly on the strength of the external force. The particulates in most of the final clusters are in the crystal state, as can also be deduced from the corresponding velocity and auto-correlation functions.
基金Supported by National Natural Science Foundation of China(Grant Nos.51975416 and 51275359)。
文摘Accurate quantification of external force is the key to improve the high-precision hemming of autobody closure panels.However,the mechanism of external force on forming quality of complex contour sheet metal with adhesive is not clear subjected to geometric curvature and materials.In the present study,taking the curved edge aluminum sheet as the research object,SPH(smooth particle hydrodynamics)is introduced to simulate the viscous adhesive,and the SPH-FEM(Finite element method)coupling model of adhesive and panels considering the viscosity-pressure effect is established.The numerical simulation of the roller hemming process is carried out,then the validity and reliability of the proposed method are verified by measuring the external force in real time using triaxial force sensor.The multi-step forming process and the effect of external force on the roll in/out,surface wave and plastic strain of aluminum alloy sheet under the viscosity-pressure effect are studied,and the relationship between process parameters and external force is discussed.Results show that the coupling SPH-FEM model can well reflect the hemming process of curved edge structure.The normal force is about 2–3 times of the tangential force in the pre and final hemming process.Compared with the case without adhesive,the surface wave of flange part of the hemming with adhesive is slightly larger.The normal force and the tangential force increase about 90 N and 30 N respectively,when the height increases by 1 mm.It provides an important basis for the accurate control of hemming trajectory and the improvement of manufacturing quality of autobody closure panels.
文摘According to the biomechanic theory and method, the dynamic mechanism of crop growth under the external force action of multi_environment factors (light, temperature,soil and nutrients etc.) was comprehensively explored.Continuous_time Markov(CTM) approach was adopted to build the dynamic model of the crop growth system and the simulated numerical method. The growth rate responses to the variation of the external force and the change of biomass saturation value were studied. The crop grew in the semiarid area was taken as an example to carry out the numerical simulation analysis, therefore the results provide the quantity basis for the field management. Comparing the dynamic model with the other plant growth model, the superiority of the former is that it displays multi_dimension of resource utilization by means of combining macroscopic with microcosmic and reveals the process of resource transition. The simulation method of crop growth system is advanced and manipulated. A real simulation result is well identical with field observational results.
基金supported by the National Natural Science Foundation of China(Grant Nos.11975088 and 11705041)the Natural Science Foundation of Zhejiang Province,China(Grant No.LY15A050001)。
文摘Evolution of the charged grains in a two-dimensional dusty plasma under a spatially harmonic external force,in particular,their long-time behaviors after the force has been withdrawn,is studied by using molecular dynamics simulation.Under an external force and a grain–grain interaction force,initially homogeneously distributed grains can reach a quasistationary state in the form of a disk crystal.After the external force is withdrawn,the disk moves initially with its size and shape nearly unchanged until it rapidly stops moving,and eventually the disk grain rotates like a vortex.The time needed to reach the final state increases with the strength of the initial external force increasing.
文摘The relationship between the partition ratio at a solid-liquid interface and the temperature gradient or the external force field has been theoretically analysed.It is shown that under the influence of a temperature gradient or an external force field,the partition ratio at a solid-liquid interface will deviate from the equilibrium value.
基金supported by the Fundamental Research Funds for the Central Universities(2012TS008)the National Natural Science Foundation of China (11026054)
文摘In this paper, the Cauchy problem for the inelastic Boltzmann equation with external force is considered in the case of initial data with infinite energy. More precisely, under the assumptions on the bicharacteristic generated by external force, we prove the global existence of solution for small initial data compared to the local Maxwellian exp(-p|x - v|^2), which has infinite mass and energy.
基金Project supported by the Grant-in-Aid for Scientific Research (C) (No. 136470207)the Japan Society for the Promotion of Science (JSPS)+1 种基金the Strategic Research Grant of City University of Hong Kong (No.7001608)the National Natural Science Foundation of China (No.10431060, No.10329101).
文摘For the Boltzmann equation with an external force in the form of the gradient of a potential function in space variable, the stability of its stationary solutions as local Maxwellians was studied by S. Ukai et al. (2005) through the energy method. Based on this stability analysis and some techniques on analyzing the convergence rates to stationary solutions for the compressible Navier-Stokes equations, in this paper, we study the convergence rate to the above stationary solutions for the Boltzmann equation which is a fundamental equation in statistical physics for non-equilibrium rarefied gas. By combining the dissipation from the viscosity and heat conductivity on the fluid components and the dissipation on the non-fluid component through the celebrated H-theorem, a convergence rate of the same order as the one for the compressible Navier-Stokes is obtained by constructing some energy functionals.
基金Supported by the National Natural Science Foundation of China (Grant No. 11771423)。
文摘We prove the asymptotic properties of the solutions to the 3D Navier–Stokes system with singular external force, by making use of Fourier localization method, the Littlewood–Paley theory and some subtle estimates in Fourier–Herz space. The main idea of the proof is motivated by that of Cannone et al. [J. Differential Equations, 314, 316–339(2022)]. We deal either with the nonstationary problem or with the stationary problem where solution may be singular due to singular external force. In this paper, the Fourier–Herz space includes the function space of pseudomeasure type used in Cannone et al. [J. Differential Equations, 314, 316–339(2022)]
基金funded by the Strategic Priority Research Program of Chinese Academy of Sciences(Grant No.XDA17010504)the National Natural Science Foundation of China(Nos.11774357,11947302)。
文摘A classical particle system coupled with a thermostat driven by an external constant force reaches its steady state when the ensemble-averaged drift velocity does not vary with time.In this work,the statistical mechanics of such a system is derived solely based on the equiprobability and ergodicity principles,free from any conclusions drawn on equilibrium statistical mechanics or local equilibrium hypothesis.The momentum space distribution is determined by a random walk argument,and the position space distribution is determined by employing the equiprobability and ergodicity principles.The expressions for energy,entropy,free energy,and pressures are then deduced,and the relation among external force,drift velocity,and temperature is also established.Moreover,the relaxation towards its equilibrium is found to be an exponentially decaying process obeying the minimum entropy production theorem.
基金supported by the National Natural Science Foundation of China (Nos. 11121101,10728101)the National Basic Research Program of China (973 Program) (No. 2007CB814800)+1 种基金the 111 Project(No. B08018)SGST (No. 09DZ2272900)
文摘This paper establishes the global existence of classical solution to the system of homogeneous,isotropic hyperelasticity with time-independent external force,provided that the nonlinear term obeys a type of null condition.The authors first prove the existence and uniqueness of the stationary solution.Then they show that the solution to the dynamical system converges to the stationary solution as time goes to infinity.
基金supported by Scientific Research Fund of Hunan Provincial Education Department under Grant No. 07B075Interactive Project Fund of Xiangtan University under Grant No. 061ND09Dr. Shangyou Zeng's Initial Scientific Research Fund of Xiangtan University
文摘We report the oscillating propagation of kink in a nondissipative Frenkel-Kontorova (FK) chain driven by external DC force, which is different from the usual propagation of localized modes with equal speed. When the kink moves in the opposite direction of the external DC force, the kink will be accelerated and the potential of the FK chain in the external force field is transformed to be the kinetic energy of the kink. If the kink reaches the boundary of the FK chain, the kink will be bounced back and moves in the opposite direction, then the kink will be decelerated gradually and the kinetic energy of the kink & transformed to be the potential of the FK chain in the external force field. If the speed of the kink reaches zero, the kink will move in the opposite direction again driven by the external DC force, and a new oscillating cycle begins. Simulation result demonstrates exactly the transformation between the kinetic energy of the kink and the potential of the FK chain in the external force field. The interesting energy exchange is induced by the special topology of kinks, and other localized modes, such as breathers and envelope solitons, have no the interesting phenomenon.
文摘By introducing nonlinear frequency, using Floquet theory and referring to the characteristics of the solution when it passes through the transition boundaries, all kinds of bifurcation modes and their transition boundaries of Duffing equation with two periodic excitations as well as the possible ways to chaos are studied in this paper.
基金Sponsored by National Natural Science Foundation of China (10431060, 10329101)
文摘For the viscous and heat-conductive fluids governed by the compressible Navier- Stokes equations with external force of general form in R^3, there exist nontrivial stationary solutions provided the external forces are small in suitable norms, which was studied in article [15], and there we also proved the global in time stability of the stationary solutions with respect to initial data in H^3-framework. In this article, the authors investigate the rates of convergence of nonstationary solutions to the corresponding stationary solutions when the initial data are small in H^3 and bounded in L6/5.
基金National Natural Science Foundation of China(No. 50275052).
文摘In the course of studying on aerodynamic change and its effect on steering stability and controllability of an automobile in passing, because of multi interaction streams, it is difficult to use traditional methods, such as wind tunnel test and road test. If the passing process of an automobile is divided into many time segments, so as to avoid the use of moving mesh which takes large calculation resource and CPU processing time in calculating, the segments are simulated with computational fluid dynamics (CFD) method, then the approximate computational results about external flow field will be obtained. On the basis of the idea, the change of external flow field of wagon-shaped car at the moment of passing is simulated through solving three-dimensional, steady and uncompressible N-S equations with finite volume method. Numerical simulation analysis of side force coefficient, stream lines, body surface pressure distribution of wagon-shaped car are presented and a preliminary discussion of aerodynamic characteristics of correlative situations is obtained. Finally, the C3 -x/l curve of side force coefficient(C3) of car following relative distance (x/l) between cars is obtained. By comparison, the curve is coincident well with the experimental data, which shows creditability of numerical simulation methods presented.
基金This work was supported by the Japan Society for the Promotion of Science(KARENHI grant number JP 15K20002)by the Yamaguchi University Hospital(a translational promotion grant).
文摘In spinal cord injuries,external forces from various directions occur at various velocities.Therefore,it is important to physically evaluate whether the spinal cord is susceptible to damage and an increase in internal stress for external forces.We hypothesized that the spinal cord has mechanical features that vary under stress depending on the direction and velocity of injury.However,it is difficult to perform experiment because the spinal cord is very soft.There are no reports on the effects of multiple external forces.In this study,we used bovine spinal cord white matter to test and analyze the anisotropy and velocity dependence of the spinal cord.Tensile-vertical,tensile-parallel,shear-vertical,and shear-parallel tests were performed on the white matter in the fibrous direction(cranial to caudal).Strain rate in the experiment was 0.1,1,10,and 100/s.We calculated the Young’s modulus of the spinal cord.Results of the tensile and shear tests revealed that stress tended to increase when external forces were applied parallel to the direction of axon fibers,such as in tensile-vertical and shear-vertical tests.However,external forces those tear against the fibrous direction and vertically,such as in tensile-parallel and shear-parallel tests,were less likely to increase stress even with increased velocity.We found that the spinal cord was prone to external forces,especially in the direction of the fibers,and to be under increased stress levels when the velocity of external forces increased.From these results,we confirmed that the spinal cord has velocity dependence and anisotropy.The Institutional Animal Care and Use Committee of Yamaguchi University waived the requirement for ethical approval.