The external loop airlift reactor(ELALR)is widely used for gasliquid reactions.It’s advantage of good heat and mass transfer rates compared to conventional bubble column reactors.In the case of fermentation applicati...The external loop airlift reactor(ELALR)is widely used for gasliquid reactions.It’s advantage of good heat and mass transfer rates compared to conventional bubble column reactors.In the case of fermentation application where a medium is highly viscous and coalescing in nature,internal in riser helps in the improvement of the interfacial area as well as in the reduction of liquidphase back mixing.The computational fluid dynamic(CFD)as a tool is used to design and scaleup of sectionalized external loop airlift reactor.The present work deals with computational fluid dynamics(CFD)techniques and experimental measurement of a gas holdup,liquid circulation velocity,liquid axial velocity,Sauter mean bubble diameter over a broad range of superficial gas velocity 0.0024≤UG≤0.0168 m s 1.The correlation has been made for bubble size distribution with specific power consumption for different plate configurations.The effects of an internal on different mass transfer models have been completed to assess their suitability.The predicted local mass transfer coefficient has been found higher in the sectionalized external loop airlift reactor than the conventional ELALR.展开更多
The start-up of external circulationadded internal circulation(IC) reactor was finished in 26 d, 32 d fewer than that of IC reactor. To evaluate the influence of the added external circulation on the development of gr...The start-up of external circulationadded internal circulation(IC) reactor was finished in 26 d, 32 d fewer than that of IC reactor. To evaluate the influence of the added external circulation on the development of granular sludge, the characteristics of the granular sludge taken from the two tested laboratory-scale reactors during start-up were studied. The results show that the added external circulation can enhance biomass granulation, accelerate granule development and improve sludge characteristics. At the end of start-up, the granular size of sludge in external circulation-added IC reactor greatly increases with a size distribution much better than that of sludge in IC reactor. The granular sludge originated from external circulationadded IC reactor contains more extracellular polymers and has a greater settling velocity than that from IC reactor. Methanogenic activity of the granular sludge from the external circulationadded IC reactor started 26 d ago reaches 358.23mL·g -1 ·d -1 , 1.66 and 1.20 times as great as that of the sludge from the IC reactor started 26 d and 58 d ago respectively.展开更多
In order to guide the inoculums selection for the anaerobic treatment of methanol wastewater in the engineering application,two 7 L bench-scale external circulation (EC) anaerobic reactors were operated to investigate...In order to guide the inoculums selection for the anaerobic treatment of methanol wastewater in the engineering application,two 7 L bench-scale external circulation (EC) anaerobic reactors were operated to investigate the inoculums of anaerobic granular sludge and anaerobic digested sludge,focusing on the efficiency and process stability.The effect of impact concentration and temperature on the performance was studied.The results demonstrated that anaerobic granular sludge as the inoculums could complete the start-up more rapidly than the anaerobic digested sludge,and above 90% COD removal were achieved at the organic loading rate of 10 to 15 kgCOD/(m3·d).The effect of impact COD on the methanogenic activity of sludge was weak and the removal efficiencies recovered gradually in the two reactors.The COD removal efficiencies reduced swiftly to 50%-60% due to the impact temperature.The results indicated that the complex bacterial groups in anaerobic digested sludge benefited to enhance the reactor's capacity for withstanding the temperature shock at some extent.展开更多
A new developed external loop airlift slurry reactor, which was integrated with gas–liquid–solid three-phase mixing, mass transfer, and liquid–solid separation simultaneously, was deemed to be a promising slurry re...A new developed external loop airlift slurry reactor, which was integrated with gas–liquid–solid three-phase mixing, mass transfer, and liquid–solid separation simultaneously, was deemed to be a promising slurry reactor due to its prominent advantages such as achieving continuous separation of clear liquid from slurry and cyclic utilization of solid particles without any extra energy, energy-saving, and intrinsic safety design. The principal operating parameters, including gas separator volume, handling capacity, and superficial gas velocity, are systematically investigated here to promote the capabilities of mixing, mass transfer, and yield in the pilot external loop airlift slurry reactor. The influences of top clearance and throughput of the clear liquid on flow regime and gas holdup in the riser, liquid circulating velocity, and volumetric mass transfer coefficient with a typical high solid holdup and free of particles are examined experimentally. It was found that increasing the gas separator volume could promote the liquid circulating velocity by about 14.0% at most. Increasing the handling capacity of the clear liquid from 0.9 m3·h-1 to 3.0 m3·h-1 not only could increase the output without any adverse consequences, but also could enhance the liquid circulating velocity as much as 97.3%. Typical operating conditions investigated here can provide some necessary data and guidelines for this new external loop airlift slurry reactor to upgrade its performances.展开更多
New modified combination mathematical models including the pores blocking models and the cake layer models were developed to describe the continuous cross-flow microfiltration in an airlift external loop slurry reacto...New modified combination mathematical models including the pores blocking models and the cake layer models were developed to describe the continuous cross-flow microfiltration in an airlift external loop slurry reactor. The pores blocking models were created based on the standard blocking law and the intermediate blocking law, and then the cake layer models were developed based on the hydrodynamic theory in which the calculation method of porosity of cake layer was newly corrected. The Air-Water-FCC equilibrium catalysts cold model experiment was used to verify the relevant models.Results showed that the calculated values fitted well with experimental data with a relative error of less than 10%.展开更多
This paper studied the efficiency of electrocoagulation/electroflotation in removing colour from real textile wastewater by using aluminum and iron electrodes in an innovative pilot external-loop airlift reactor of 15...This paper studied the efficiency of electrocoagulation/electroflotation in removing colour from real textile wastewater by using aluminum and iron electrodes in an innovative pilot external-loop airlift reactor of 150 L. The reactor was designed to operate in batch and continuous modes. The real effluent contained 90% of disperse dye and 10% of reactive dye. A complete flotation of pollutants with acceptable mixing was achieved in this reactor using only the overall liquid recirculation induced by H2 microbubbles. The treatment of these discharges was easier using electrodes of iron rather than aluminum. The optimal initial pH was 10 for both aluminum and iron electrodes. By using iron electrodes, the maximum decolourisation efficiency and COD reduction efficiency reached respectively 96% and 65% for 90 minutes of treatment. Similarly, by using aluminum electrodes, the maximum decolourisation efficiency reached 90%, COD reduction reached 51% for 120 minutes of treatment. In the case of an initial pH slightly different to 10, the required time to reach 90% ranged from double to triple.展开更多
This study reports an experimental investigation on hydrodynamics and mass transfer characteristics in a 15.6x10-3 m3 external loop airlift reactor for oil-in-water micro-emulsions with oil to water volume ratio (φ...This study reports an experimental investigation on hydrodynamics and mass transfer characteristics in a 15.6x10-3 m3 external loop airlift reactor for oil-in-water micro-emulsions with oil to water volume ratio (φ) rang- ing from 3% to 7% (by volume). For comparative purposes, experiments were also carried out with water. Increase in φ of micro-emulsion systems results in an increment in the gas holdup and a decrease in the volumetric gas-liquid oxygen transfer coefficient and liquid circulation velocity, attributed to the escalation in the viscosity of mi- cro-emulsions. The gas holdup and volumetric mass transfer coefficient for micro-emulsion systems are signifi- cantly higher than that of water system. Two correlations are developed to predict the gas holdup and oxygen trans- fer coefficient展开更多
In this study, a simple and effective technique for establishing an external mass transfer model in a recirculated packed-bed batch reactor (RPBBR) with an immobilized lipase enzyme and Jatropha oil system is presente...In this study, a simple and effective technique for establishing an external mass transfer model in a recirculated packed-bed batch reactor (RPBBR) with an immobilized lipase enzyme and Jatropha oil system is presented. The external mass transfer effect can be represented with a model in the form of Colburn factor JD = K Re-(1–n). The value of K and n were derived from experimental data at different mass flow rates.The experiment shows an average increment of 1.51% FFA for calcium alginate and 1.62% FFA for carrageenan after the hydrolysis took place. Based on different biopolymer material used in immobilized beads, JD = 1.674 Re-0.4 for calcium alginate and JD = 1.881 Re-0.3 for k-carrageenan were found to be adequate to predict the experimental data for external mass transfer in the reactor in the Reynolds number range of 0.2 to 1.2. The purposed model can be used for the design of industrial bioreactor and scale up. Besides, the external mass transfer coefficients for the hydrolysis of Jatropha oil reaction and the entrapment efficiency for the two biopolymer materials used were also investigated.展开更多
A multi-tube air-lift loop reactor (MT-ALR) is presented in this paper. Based on the energy conservation, a mathematical model describing the liquid circulation flow rate was developed, which was determined by gas vel...A multi-tube air-lift loop reactor (MT-ALR) is presented in this paper. Based on the energy conservation, a mathematical model describing the liquid circulation flow rate was developed, which was determined by gas velocity, the cross areas of riser and downcomer, gas hold-up and the local frictional loss coefficient. The experimental data indicate that either increase of gas flow rate or reduction of the downcomer diameter contributes to higher liquid circulation rate. The correlation between total and the local frictional loss coefficients was also established.Effects of gas flowrate in two risers and diameter of downcomer on the liquid circulation rate were examined. The value of total frictional loss coefficient was measured as a function of the cross area of downcomer and independent of the gas flow rate. The calculated results of liquid circulation rates agreed well with the experimental data with an average relative error of 9.6%.展开更多
This paper reviews the early development of design requirements for seismic events in USA early developing nuclear electric generating fleet. Notable safety studies,including WASH-1400,Sandia Siting Study and the NURE...This paper reviews the early development of design requirements for seismic events in USA early developing nuclear electric generating fleet. Notable safety studies,including WASH-1400,Sandia Siting Study and the NUREG1150 probabilistic risk study,are briefly reviewed in terms of their relevance to extreme accidents arising from seismic and other severe accident initiators. Specific characteristic about the nature of severe accidents in nuclear power plant (NPP) are reviewed along with present day state-of-art analysis methodologies (methods for estimation of leakages and consequences of releases (MELCOR) and MELCOR accident consequence code system (MACCS)) that are used to evaluate severe accidents and to optimize mitigative and protective actions against such accidents. It is the aim of this paper to make nuclear operating nations aware of the risks that accompany a much needed energy resource and to identify some of the tools,techniques and landmark safety studies that serve to make the technology safer and to maintain vigilance and adequate safety culture for the responsible management of this valuable but unforgiving technology.展开更多
In this study, a full-scale internal circulation(IC) reactor coupled with an external circulation system was developed to treat high-strength leachate from a municipal solid waste(MSW)incineration plant, in which ...In this study, a full-scale internal circulation(IC) reactor coupled with an external circulation system was developed to treat high-strength leachate from a municipal solid waste(MSW)incineration plant, in which anaerobic sludge granulation was intensively investigated. Results showed that the IC reactor achieved excellent treatment performance under high organic loading rates(OLR) of 21.06–25.16 kg chemical oxygen demand(COD)/(m3? day). The COD removal efficiency and biogas yield respectively reached 89.4%–93.4% and 0.42–0.50 m3/kg COD.The formation of extracellular polymeric substances(EPS) was closely associated with sludge granulation. Protein was the dominant component in sludge EPS, and its content was remarkably increased from 21.6 to 99.7 mg/g Volatile Suspended Solid(VSS) during the reactor operation. The sludge Zeta potential and hydrophobicity positively correlated with the protein/polysaccharide ratio in EPS, and they were respectively increased from-26.2 m V and 30.35% to-10.6 m V and 78.67%, which was beneficial to microbial aggregation. Three-dimensional fluorescence spectroscopy(3 D-EEM) and Fourier transform infrared spectroscopy(FT-IR)analysis further indicated the importance of protein-like EPS substances in the sludge granulation. Moreover, it was also found that the secondary structures of EPS proteins varied during the reactor operation.展开更多
Local hydrodynamics in the riser of an external loop airlift reactor (EL-ALR) are identified and the performances of three drag models are evaluated in computational fluid dynamics simulation. The simulation results...Local hydrodynamics in the riser of an external loop airlift reactor (EL-ALR) are identified and the performances of three drag models are evaluated in computational fluid dynamics simulation. The simulation results show that the Schiller-Naumann drag model underestimated the local gas holdup at lower superficial gas velocity whereas the Tomiyama drag model overestimated that at higher superficial gas velocity. By contrast, the dual-bubble-size (DBS)-local drag model gave more reasonable radial and axial distri-butions of gas holdup in all cases. The reason is that the DBS-local drag model gave correct values of the lumped parameter, i,e., the ratio of the drag coefficient to bubble diameter, for varying operating conditions and radial positions. This ratio is reasonably expected to decrease with increasing superficial gas velocity and be smaller in the center and larger near the wall. Only the DBS-local drag model correctly reproduced these trends. The radial profiles of the axial velocity of the liquid and gas predicted by the DBS-local model also agreed well with experimental data.展开更多
文摘The external loop airlift reactor(ELALR)is widely used for gasliquid reactions.It’s advantage of good heat and mass transfer rates compared to conventional bubble column reactors.In the case of fermentation application where a medium is highly viscous and coalescing in nature,internal in riser helps in the improvement of the interfacial area as well as in the reduction of liquidphase back mixing.The computational fluid dynamic(CFD)as a tool is used to design and scaleup of sectionalized external loop airlift reactor.The present work deals with computational fluid dynamics(CFD)techniques and experimental measurement of a gas holdup,liquid circulation velocity,liquid axial velocity,Sauter mean bubble diameter over a broad range of superficial gas velocity 0.0024≤UG≤0.0168 m s 1.The correlation has been made for bubble size distribution with specific power consumption for different plate configurations.The effects of an internal on different mass transfer models have been completed to assess their suitability.The predicted local mass transfer coefficient has been found higher in the sectionalized external loop airlift reactor than the conventional ELALR.
文摘The start-up of external circulationadded internal circulation(IC) reactor was finished in 26 d, 32 d fewer than that of IC reactor. To evaluate the influence of the added external circulation on the development of granular sludge, the characteristics of the granular sludge taken from the two tested laboratory-scale reactors during start-up were studied. The results show that the added external circulation can enhance biomass granulation, accelerate granule development and improve sludge characteristics. At the end of start-up, the granular size of sludge in external circulation-added IC reactor greatly increases with a size distribution much better than that of sludge in IC reactor. The granular sludge originated from external circulationadded IC reactor contains more extracellular polymers and has a greater settling velocity than that from IC reactor. Methanogenic activity of the granular sludge from the external circulationadded IC reactor started 26 d ago reaches 358.23mL·g -1 ·d -1 , 1.66 and 1.20 times as great as that of the sludge from the IC reactor started 26 d and 58 d ago respectively.
基金Sponsored by the National High Technology Research Development Plan of China (Grant No.2007AA06A411)
文摘In order to guide the inoculums selection for the anaerobic treatment of methanol wastewater in the engineering application,two 7 L bench-scale external circulation (EC) anaerobic reactors were operated to investigate the inoculums of anaerobic granular sludge and anaerobic digested sludge,focusing on the efficiency and process stability.The effect of impact concentration and temperature on the performance was studied.The results demonstrated that anaerobic granular sludge as the inoculums could complete the start-up more rapidly than the anaerobic digested sludge,and above 90% COD removal were achieved at the organic loading rate of 10 to 15 kgCOD/(m3·d).The effect of impact COD on the methanogenic activity of sludge was weak and the removal efficiencies recovered gradually in the two reactors.The COD removal efficiencies reduced swiftly to 50%-60% due to the impact temperature.The results indicated that the complex bacterial groups in anaerobic digested sludge benefited to enhance the reactor's capacity for withstanding the temperature shock at some extent.
基金supported by the National Natural Science Foundation of China (Nos. 21808234,21878318)the DNL Cooperation Fund,CAS(DNL201902)+3 种基金“Transformational Technologies for Clean Energy and Demonstration”, Strategic Priority Research Program of the CAS(XDA21060400)QIBEBT and Dalian National Laboratory for Clean Energy of the CAS(QIBEBT ZZBS201803,QIBEBT I201907)CAS Key Technology Talent ProgramProject of CNPC-DICP Joint Research Center。
文摘A new developed external loop airlift slurry reactor, which was integrated with gas–liquid–solid three-phase mixing, mass transfer, and liquid–solid separation simultaneously, was deemed to be a promising slurry reactor due to its prominent advantages such as achieving continuous separation of clear liquid from slurry and cyclic utilization of solid particles without any extra energy, energy-saving, and intrinsic safety design. The principal operating parameters, including gas separator volume, handling capacity, and superficial gas velocity, are systematically investigated here to promote the capabilities of mixing, mass transfer, and yield in the pilot external loop airlift slurry reactor. The influences of top clearance and throughput of the clear liquid on flow regime and gas holdup in the riser, liquid circulating velocity, and volumetric mass transfer coefficient with a typical high solid holdup and free of particles are examined experimentally. It was found that increasing the gas separator volume could promote the liquid circulating velocity by about 14.0% at most. Increasing the handling capacity of the clear liquid from 0.9 m3·h-1 to 3.0 m3·h-1 not only could increase the output without any adverse consequences, but also could enhance the liquid circulating velocity as much as 97.3%. Typical operating conditions investigated here can provide some necessary data and guidelines for this new external loop airlift slurry reactor to upgrade its performances.
基金financially supported by the National Key Research & Development Program of China (2016YFB0301600)
文摘New modified combination mathematical models including the pores blocking models and the cake layer models were developed to describe the continuous cross-flow microfiltration in an airlift external loop slurry reactor. The pores blocking models were created based on the standard blocking law and the intermediate blocking law, and then the cake layer models were developed based on the hydrodynamic theory in which the calculation method of porosity of cake layer was newly corrected. The Air-Water-FCC equilibrium catalysts cold model experiment was used to verify the relevant models.Results showed that the calculated values fitted well with experimental data with a relative error of less than 10%.
文摘This paper studied the efficiency of electrocoagulation/electroflotation in removing colour from real textile wastewater by using aluminum and iron electrodes in an innovative pilot external-loop airlift reactor of 150 L. The reactor was designed to operate in batch and continuous modes. The real effluent contained 90% of disperse dye and 10% of reactive dye. A complete flotation of pollutants with acceptable mixing was achieved in this reactor using only the overall liquid recirculation induced by H2 microbubbles. The treatment of these discharges was easier using electrodes of iron rather than aluminum. The optimal initial pH was 10 for both aluminum and iron electrodes. By using iron electrodes, the maximum decolourisation efficiency and COD reduction efficiency reached respectively 96% and 65% for 90 minutes of treatment. Similarly, by using aluminum electrodes, the maximum decolourisation efficiency reached 90%, COD reduction reached 51% for 120 minutes of treatment. In the case of an initial pH slightly different to 10, the required time to reach 90% ranged from double to triple.
文摘This study reports an experimental investigation on hydrodynamics and mass transfer characteristics in a 15.6x10-3 m3 external loop airlift reactor for oil-in-water micro-emulsions with oil to water volume ratio (φ) rang- ing from 3% to 7% (by volume). For comparative purposes, experiments were also carried out with water. Increase in φ of micro-emulsion systems results in an increment in the gas holdup and a decrease in the volumetric gas-liquid oxygen transfer coefficient and liquid circulation velocity, attributed to the escalation in the viscosity of mi- cro-emulsions. The gas holdup and volumetric mass transfer coefficient for micro-emulsion systems are signifi- cantly higher than that of water system. Two correlations are developed to predict the gas holdup and oxygen trans- fer coefficient
文摘In this study, a simple and effective technique for establishing an external mass transfer model in a recirculated packed-bed batch reactor (RPBBR) with an immobilized lipase enzyme and Jatropha oil system is presented. The external mass transfer effect can be represented with a model in the form of Colburn factor JD = K Re-(1–n). The value of K and n were derived from experimental data at different mass flow rates.The experiment shows an average increment of 1.51% FFA for calcium alginate and 1.62% FFA for carrageenan after the hydrolysis took place. Based on different biopolymer material used in immobilized beads, JD = 1.674 Re-0.4 for calcium alginate and JD = 1.881 Re-0.3 for k-carrageenan were found to be adequate to predict the experimental data for external mass transfer in the reactor in the Reynolds number range of 0.2 to 1.2. The purposed model can be used for the design of industrial bioreactor and scale up. Besides, the external mass transfer coefficients for the hydrolysis of Jatropha oil reaction and the entrapment efficiency for the two biopolymer materials used were also investigated.
基金Supported by Liaoning Provincial Natural Science Foundation(No.972050).
文摘A multi-tube air-lift loop reactor (MT-ALR) is presented in this paper. Based on the energy conservation, a mathematical model describing the liquid circulation flow rate was developed, which was determined by gas velocity, the cross areas of riser and downcomer, gas hold-up and the local frictional loss coefficient. The experimental data indicate that either increase of gas flow rate or reduction of the downcomer diameter contributes to higher liquid circulation rate. The correlation between total and the local frictional loss coefficients was also established.Effects of gas flowrate in two risers and diameter of downcomer on the liquid circulation rate were examined. The value of total frictional loss coefficient was measured as a function of the cross area of downcomer and independent of the gas flow rate. The calculated results of liquid circulation rates agreed well with the experimental data with an average relative error of 9.6%.
文摘This paper reviews the early development of design requirements for seismic events in USA early developing nuclear electric generating fleet. Notable safety studies,including WASH-1400,Sandia Siting Study and the NUREG1150 probabilistic risk study,are briefly reviewed in terms of their relevance to extreme accidents arising from seismic and other severe accident initiators. Specific characteristic about the nature of severe accidents in nuclear power plant (NPP) are reviewed along with present day state-of-art analysis methodologies (methods for estimation of leakages and consequences of releases (MELCOR) and MELCOR accident consequence code system (MACCS)) that are used to evaluate severe accidents and to optimize mitigative and protective actions against such accidents. It is the aim of this paper to make nuclear operating nations aware of the risks that accompany a much needed energy resource and to identify some of the tools,techniques and landmark safety studies that serve to make the technology safer and to maintain vigilance and adequate safety culture for the responsible management of this valuable but unforgiving technology.
基金supported by the National Natural Science Foundation of China(Nos.21506076,51678279 and 51508230)the National Science and Technological Support of China(No.2014BAC25B01)
文摘In this study, a full-scale internal circulation(IC) reactor coupled with an external circulation system was developed to treat high-strength leachate from a municipal solid waste(MSW)incineration plant, in which anaerobic sludge granulation was intensively investigated. Results showed that the IC reactor achieved excellent treatment performance under high organic loading rates(OLR) of 21.06–25.16 kg chemical oxygen demand(COD)/(m3? day). The COD removal efficiency and biogas yield respectively reached 89.4%–93.4% and 0.42–0.50 m3/kg COD.The formation of extracellular polymeric substances(EPS) was closely associated with sludge granulation. Protein was the dominant component in sludge EPS, and its content was remarkably increased from 21.6 to 99.7 mg/g Volatile Suspended Solid(VSS) during the reactor operation. The sludge Zeta potential and hydrophobicity positively correlated with the protein/polysaccharide ratio in EPS, and they were respectively increased from-26.2 m V and 30.35% to-10.6 m V and 78.67%, which was beneficial to microbial aggregation. Three-dimensional fluorescence spectroscopy(3 D-EEM) and Fourier transform infrared spectroscopy(FT-IR)analysis further indicated the importance of protein-like EPS substances in the sludge granulation. Moreover, it was also found that the secondary structures of EPS proteins varied during the reactor operation.
文摘Local hydrodynamics in the riser of an external loop airlift reactor (EL-ALR) are identified and the performances of three drag models are evaluated in computational fluid dynamics simulation. The simulation results show that the Schiller-Naumann drag model underestimated the local gas holdup at lower superficial gas velocity whereas the Tomiyama drag model overestimated that at higher superficial gas velocity. By contrast, the dual-bubble-size (DBS)-local drag model gave more reasonable radial and axial distri-butions of gas holdup in all cases. The reason is that the DBS-local drag model gave correct values of the lumped parameter, i,e., the ratio of the drag coefficient to bubble diameter, for varying operating conditions and radial positions. This ratio is reasonably expected to decrease with increasing superficial gas velocity and be smaller in the center and larger near the wall. Only the DBS-local drag model correctly reproduced these trends. The radial profiles of the axial velocity of the liquid and gas predicted by the DBS-local model also agreed well with experimental data.