Photocatalysis is considered as one of the most promising technologies to generate renewable energy and degrade environmental pollutants.Tremendous efforts have been made to improve photocatalytic efficiency.Among the...Photocatalysis is considered as one of the most promising technologies to generate renewable energy and degrade environmental pollutants.Tremendous efforts have been made to improve photocatalytic efficiency.Among these,tuning spin polarization and introducing an external magnetic field are considered two promising strategies to boost photocatalytic performance.Herein this review highlights the recent breakthroughs through manipulating spin states and applying external magnetic fields for enhancing photocatalytic reactions.The relevant characterization techniques and fundamental mechanisms are summarized.Spin polarization states of photocatalysts have received considerable attention due to their unique roles,including inhibiting the recombination of photoexcited carriers owing to spin orientation constraint,enhancing the reaction product selectivity,and reducing the reaction barriers via optimizing the absorption energy and binding strength.As for the effects of external magnetic field on photocatalytic performance,we mainly discuss the separation enhancement of photoinduced carriers under static and time-varying magnetic fields and the magneto-hydrodynamic effect of charged particles.Lastly,the negative magnetoresistance effect is discussed due to the synergistic effects of the electron spin state and an external magnetic field.These discussions in this review may provide new insights into designing new semiconductors for boosting photocatalytic performance in internal and external magnetic fields.展开更多
基金the National Natural Science Foundation of China(Nos.61774055,51871138,and U2102212)the Science and Technology Committee of Shanghai(No.19010500400)。
文摘Photocatalysis is considered as one of the most promising technologies to generate renewable energy and degrade environmental pollutants.Tremendous efforts have been made to improve photocatalytic efficiency.Among these,tuning spin polarization and introducing an external magnetic field are considered two promising strategies to boost photocatalytic performance.Herein this review highlights the recent breakthroughs through manipulating spin states and applying external magnetic fields for enhancing photocatalytic reactions.The relevant characterization techniques and fundamental mechanisms are summarized.Spin polarization states of photocatalysts have received considerable attention due to their unique roles,including inhibiting the recombination of photoexcited carriers owing to spin orientation constraint,enhancing the reaction product selectivity,and reducing the reaction barriers via optimizing the absorption energy and binding strength.As for the effects of external magnetic field on photocatalytic performance,we mainly discuss the separation enhancement of photoinduced carriers under static and time-varying magnetic fields and the magneto-hydrodynamic effect of charged particles.Lastly,the negative magnetoresistance effect is discussed due to the synergistic effects of the electron spin state and an external magnetic field.These discussions in this review may provide new insights into designing new semiconductors for boosting photocatalytic performance in internal and external magnetic fields.