Objectives: Developing inference procedures on the quasi-binomial distribution and the regression model. Methods: Score testing and the method of maximum likelihood for regression parameters estimation. Data: Several ...Objectives: Developing inference procedures on the quasi-binomial distribution and the regression model. Methods: Score testing and the method of maximum likelihood for regression parameters estimation. Data: Several examples are included, based on published data. Results: A quasi-binomial model is used to model binary response data which exhibit extra-binomial variation. A partial score test on the binomial hypothesis versus the quasi-binomial alternative is developed and illustrated on three data sets. The extended logit transformation on the binomial parameter is introduced and the large sample dispersion matrix of the estimated parameters is derived. The Nonlinear Mixed Procedure (NLMIXED) in SAS is shown to be very appropriate for the estimation of nonlinear regression.展开更多
文摘Objectives: Developing inference procedures on the quasi-binomial distribution and the regression model. Methods: Score testing and the method of maximum likelihood for regression parameters estimation. Data: Several examples are included, based on published data. Results: A quasi-binomial model is used to model binary response data which exhibit extra-binomial variation. A partial score test on the binomial hypothesis versus the quasi-binomial alternative is developed and illustrated on three data sets. The extended logit transformation on the binomial parameter is introduced and the large sample dispersion matrix of the estimated parameters is derived. The Nonlinear Mixed Procedure (NLMIXED) in SAS is shown to be very appropriate for the estimation of nonlinear regression.