期刊文献+
共找到13,988篇文章
< 1 2 250 >
每页显示 20 50 100
Analysis of the Risk of Water Breakout in the Bottom Plate of High-Intensity Mining of Extra-Thick Coal Seams
1
作者 Shuo Wang Hongdong Kang Xinchen Wang 《Journal of Geoscience and Environment Protection》 2024年第5期81-91,共11页
In order to clarify the danger of water breakout in the bottom plate of extra-thick coal seam mining, 2202 working face of a mine in the west is taken as the research object, and it is proposed to use the on-site moni... In order to clarify the danger of water breakout in the bottom plate of extra-thick coal seam mining, 2202 working face of a mine in the west is taken as the research object, and it is proposed to use the on-site monitoring means combining borehole peeping and microseismic monitoring, combined with the theoretical analysis to analyze the danger of water breakout in the bottom plate. The results show that: 1) the theoretically calculated maximum damage depth of the bottom plate is 27.5 m, and its layer is located above the Austrian ash aquifer, which has the danger of water breakout;2) the drill hole peeping at the bottom plate of the working face shows that the depth of the bottom plate fissure development reaches 26 m, and the integrity of the water barrier layer has been damaged, so there is the risk of water breakout;3) for the microseismic monitoring of the anomalous area, the bottom plate of the return air downstream channel occurs in the field with a one-week lag, which shows that microseismic monitoring events may reflect the water breakout of the underground. This shows that the microseismic monitoring events can reflect the changes of the underground flow field, which can provide a reference basis for the early warning of water breakout. The research results can provide reference for the prediction of sudden water hazard. 展开更多
关键词 extra-thick coal seam High-Intensity Mining Microseismic Monitoring Water-Surge Hazard Borehole Peeping
下载PDF
Stability analysis of longwall top-coal caving face in extra-thick coal seams based on an innovative numerical hydraulic support model
2
作者 Jun Guo Wenbo Huang +7 位作者 Guorui Feng Jinwen Bai Lirong Li Zi Wang Luyang Yu Xiaoze Wen Jie Zhang Wenming Feng 《International Journal of Mining Science and Technology》 SCIE EI CAS CSCD 2024年第4期491-505,共15页
The relationship between support and surrounding rock is of great significance to the control of surrounding rock in mining process.In view of the fact that most of the existing numerical simulation methods construct ... The relationship between support and surrounding rock is of great significance to the control of surrounding rock in mining process.In view of the fact that most of the existing numerical simulation methods construct virtual elements and stress servo control to approximately replace the hydraulic support problem,this paper establishes a new numerical model of hydraulic support with the same working characteristics as the actual hydraulic support by integrating numerical simulation software Rhino,Griddle and FLAC3D,which can realize the simulation of different working conditions.Based on this model,the influence mechanism of the supporting strength of hydraulic support on surrounding rock stress regulation and coal stability in front of the top coal caving face in extra thick coal seam were researched.Firstly,under different support intensity,the abutment pressure of the bearing coal and the coal in front of it presents the “three-stage”evolution characteristics.The influence range of support intensity is 15%–30%.Secondly,1.5 MPa is the upper limit of impact that the support strength can have on the front coal failure area.Thirdly,within a displacement range of 2.76 m from the coal wall,a support strength of1.5 MPa provides optimal control of the horizontal displacement of the coal. 展开更多
关键词 Extremely thick coal seam Fully mechanized top coal caving Support strength Support-surrounding rock interaction
下载PDF
Behaviors of overlying strata in extra-thick coal seams using top-coalcaving method 被引量:6
3
作者 Bin Yu 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2016年第2期238-247,共10页
Accidents such as support failure and excessive deformation of roadways due to drastic changes in strata behaviors are frequently reported when mining the extra-thick coal seams Nos.3e5 in Datong coal mine with top-co... Accidents such as support failure and excessive deformation of roadways due to drastic changes in strata behaviors are frequently reported when mining the extra-thick coal seams Nos.3e5 in Datong coal mine with top-coal caving method,which significantly hampers the mine's normal production.To understand the mechanism of strata failure,this paper presented a structure evolution model with respect to strata behaviors.Then the behaviors of strata overlying the extra-thick coal seams were studied with the combined method of theoretical analysis,physical simulation,and field measurement.The results show that the key strata,which are usually thick-hard strata,play an important role in overlying movement and may influence the mining-induced strata behaviors in the working face using top-coal caving method.The structural model of far-field key strata presents a 'masonry beam' type structure when'horizontal O-X' breakage type happens.The rotational motion of the block imposed radial compressive stress on the surrounding rock mass of the roadway.This can induce excessive deformation of roadway near the goaf.Besides,this paper proposed a pre-control technology for the hard roof based on fracture holes and underground roof pre-splitting.It could effectively reduce stress concentration and release the accumulated energy of the strata,when mining underground coal resources with top-coal caving method. 展开更多
关键词 extra-thick coal seam Datong mining area Large-space structure Near-and far-field strata Strata behavior Key strata
下载PDF
Dynamic destabilization analysis based on AE experiment of deep-seated,steep-inclined and extra-thick coal seam 被引量:5
4
作者 Fenhua Ren Xmgpmg Lai Meifeng Cai 《Journal of University of Science and Technology Beijing》 CSCD 2008年第3期215-219,共5页
No. 5 coal seam in Huating Coal Mine is a deep-seated, steep-inclined extra-thick coal seam where excavation disturbance is quite frequent. The maximum and minimum principal stresses differ widely. During mining, dyna... No. 5 coal seam in Huating Coal Mine is a deep-seated, steep-inclined extra-thick coal seam where excavation disturbance is quite frequent. The maximum and minimum principal stresses differ widely. During mining, dynamical destabilization happens frequently and induce tragedies. Based on the comparison between the acoustic emission (AE) experiment on dynamical destabilization of coal rock and the related in situ testing results, this article provides comprehensive analysis on the regular quantificational AE patterns (energy rate, total events) of coal rock destabilization in complex-variable environment. The comparison parameters include dynamic tension energy rate, deformation resistance to compression, and shear stress. 展开更多
关键词 coal seam acoustic emission (AE) DESTABILIZATION excavation disturbance
下载PDF
Strata behavior in extra-thick coal seam mining with upward slicing backfilling technology 被引量:1
5
作者 Deng Xuejie Zhang Jixiong +1 位作者 Kang Tao Han Xiaole 《International Journal of Mining Science and Technology》 SCIE EI CSCD 2016年第4期587-592,共6页
Based on the character of upward slicing backfilling mining and the condition of Gonggeyingzi coal mine in Inner Mongolia,this paper describes the studies of the strata behavior and the stress distribution in the proc... Based on the character of upward slicing backfilling mining and the condition of Gonggeyingzi coal mine in Inner Mongolia,this paper describes the studies of the strata behavior and the stress distribution in the process of backfilling mining in extra-thick coal seams.This was achieved by setting up and analyzing the elastic foundation beam model using the ABAQUS software.The results show that:(1) With the gradual mining of different slices,the roof appears to bend continuously but does not break.The vertical stress in the roof decreases and the decreasing amplitude reduces,while the tensile stress in the roof grows with the mining slices and the maximum tensile stress will not exceed the allowable tensile stress.(2) The front vertical stress at the working face exceeds the rear vertical stress and both show a trend of decrease with decreasing amplitude of decrease.(3) The slices mined early have more influence on the surrounding rock than the later ones.Similarly,the strata behavior experiences the same trend.The field measured data show that the roof does not break during the mining process,which is consistent with the conclusion. 展开更多
关键词 特厚煤层开采 充填技术 上向分层 矿压显现 ABAQUS软件 最大拉应力 垂直应力 开采过程
下载PDF
Numerical Study on an Applicable Underground Mining Method for Soft Extra-Thick Coal Seams in Thailand 被引量:4
6
作者 Nay Zarlin Takashi Sasaoka +1 位作者 Hideki Shimada Kikuo Matsui 《Engineering(科研)》 2012年第11期739-745,共7页
The EGAT Mae Moh Mine is the largest open pit lignite mine in Thailand and it produces lignite about 16 million tons annually. In the near future, the pit limit of the mine will be reached and underground mine will th... The EGAT Mae Moh Mine is the largest open pit lignite mine in Thailand and it produces lignite about 16 million tons annually. In the near future, the pit limit of the mine will be reached and underground mine will then be developed through the open pit in the depth of 400 - 600 m from the surface. However, due to the challenges for underground mining such as poor geological conditions, extra thickness (20 - 30 m) of coal seams, and weak mechanical properties of coal seams and the surrounding rock, the success possibility of underground mining and an applicable underground mining method is being investigated at the present. The paper discusses the applicability of multi-slice bord-and-pillar method for the soft extra thick coal seams in the Mae Moh mine by means of numerical analyses using the 3D finite difference code “FLAC3D”. 展开更多
关键词 Multi-Slice Bord-and-Pillar Method SOFT extra-thick coal seams Numerical Analyses Flac3D
下载PDF
Mechanism and control technology of strong ground pressure behaviour induced by high-position hard roofs in extra-thick coal seam mining 被引量:6
7
作者 Chao Pan Binwei Xia +2 位作者 Yujun Zuo Bin Yu Changnan Ou 《International Journal of Mining Science and Technology》 SCIE EI CAS CSCD 2022年第3期499-511,共13页
This work aimed at revealing the mechanism of strong ground pressure behaviour(SGPB)induced by high-position hard roof(HHR).Based on the supporting structures model of HHR,a modified voussoir beam mechanical model for... This work aimed at revealing the mechanism of strong ground pressure behaviour(SGPB)induced by high-position hard roof(HHR).Based on the supporting structures model of HHR,a modified voussoir beam mechanical model for HHR was established by considering the gangue support coefficient,through which the modified expressions of limit breaking span and breaking energy of HHR were deduced.Combined with the relationship between the dynamic-static loading stress of supporting body(hydraulic support and coal wall)and its comprehensive supporting strength,the criteria of ground pressure behaviour(GPB)induced by HHR were discussed.The types of Ⅰ_(1),Ⅰ_(2),Ⅱ_(1),andⅡ_(2) of GPB were interpreted.Results showed that types Ⅰ_(1) and Ⅰ_(2) were the main forms of SGPB in extra-thick coal seam mining.The main manifestation of SGPB was static stress,which was mainly derived from the instability of HHR rather than fracture.Accordingly,an innovative control technology was proposed,which can weaken static load by vertical-well separated fracturing HHR.The research results have been successfully applied to the 8101 working face in Tashan coal mine,Shanxi Province,China.The results of a digital borehole camera observation and stress monitoring proved the rationality of the GPB criteria.The control technology was successful,paving the way for new possibilities to HHR control for safety mining. 展开更多
关键词 Extra thick coal seam High-position hard roof Strong ground pressure behaviour Supporting structures Criteria of ground pressure behaviour Controlling effects
下载PDF
Gas Drainage Technology in Fully Mechanized Caving Face with Horizontal Sublevel Mining in Steep and Extra-Thick Coal Seam
8
作者 Bingxing Sun 《Open Journal of Geology》 2020年第9期957-970,共14页
This paper analyzes the gas source of the horizontally sectioned fully mechanized caving face in the steeply inclined and extra-thick seam of Adaohai Coal Mine, and numerically simulates the stress distribution and pr... This paper analyzes the gas source of the horizontally sectioned fully mechanized caving face in the steeply inclined and extra-thick seam of Adaohai Coal Mine, and numerically simulates the stress distribution and pressure relief of the lower section coal after the upper section working face is mined. It theoretically analyzed the reasonable layout of the drainage boreholes, and designed the drainage borehole layout accordingly. In the upper and lower section of the working face, the actual drainage effect of the boreholes was inspected, and the air exhaust gas volume in the working face was statistically analyzed. It was confirmed that the layout of boreholes was reasonable, the gas control effect of working face was greatly improved and fully met the needs of safe mining. The control effect was greatly improved and the need for safe mining was fully met, and thus a gas drainage technology suitable for the coal seam storage conditions and mining technology of the Adaohai Coal Mine was found. That is to say: the gas emission from the working face of the section mining mainly comes from its lower coal body. Pre-draining the lower coal body of the section and depressurizing gas interception and drainage are the key to effectively solve the problem of gas emission from the working face. Drainage boreholes in the working face of the section should be arranged at high and low positions. The high-level boreholes are located about 2 m from the top of the working face, and the high-level boreholes are about 9 m away from the top of the working face. Through the pre drainage of high and low-level boreholes in advance and the interception and pressure relief drainage, the gas control in the horizontal sublevel fully mechanized caving mining face in steep and extra thick coal seam can realize a virtuous cycle. 展开更多
关键词 Steeply Inclined Extra Thick seam Horizontal Segmentation Top coal Caving The Source of the Gas Pressure Relief Gas Drainage
下载PDF
Insights into carbon dioxide sequestration into coal seams through coupled gas flow-adsorption-deformation modelling
9
作者 Hywel Thomas Min Chen 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2024年第1期26-40,共15页
Injecting carbon dioxide(CO_(2))into coal seams may unlock substantial carbon sequestration potential.Since the coal acts like a carbon filter,it can preferentially absorb significant amounts of CO_(2).To explore this... Injecting carbon dioxide(CO_(2))into coal seams may unlock substantial carbon sequestration potential.Since the coal acts like a carbon filter,it can preferentially absorb significant amounts of CO_(2).To explore this further,desorption of the adsorbed gas due to pressure drop is investigated in this paper,to achieve an improved understanding of the long-term fate of injected CO_(2) during post-injection period.This paper presents a dual porosity model coupling gas flow,adsorption and geomechanics for studying coupled processes and effectiveness of CO_(2) sequestration in coals.A new adsorption?desorption model derived based on thermodynamics is incorporated,particularly,the desorption hysteresis is considered.The reliability of the proposed adsorption-desorption isotherm is examined via validation tests.It is indicated that occurrence of desorption hysteresis is attributed to the adsorption-induced pore deformation.After injection ceases,the injected gas continues to propagate further from the injection well,while the pressure in the vicinity of the injection well experiences a significant drop.Although the adsorbed gas near the well also decreases,this decrease is less compared to that in pressure because of desorption hysteresis.The unceasing spread of CO_(2) and drops of pressure and adsorbed gas depend on the degree of desorption hysteresis and heterogeneity of coals,which should be considered when designing CO_(2) sequestration into coal seams. 展开更多
关键词 CO_(2)geological storage coal seam ADSORPTION Desorption hysteresis
下载PDF
Research on the mechanism of rockburst induced by mined coal-rock linkage of sharply inclined coal seams
10
作者 Xingping Lai Huicong Xu +4 位作者 Pengfei Shan Qinxin Hu Weixi Ding Shangtong Yang Zhongming Yan 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2024年第5期929-942,共14页
In recent years,the mining depth of steeply inclined coal seams in the Urumqi mining area has gradually increased.Local deformation of mining coal-rock results in frequent rockbursts.This has become a critical issue t... In recent years,the mining depth of steeply inclined coal seams in the Urumqi mining area has gradually increased.Local deformation of mining coal-rock results in frequent rockbursts.This has become a critical issue that affects the safe mining of deep,steeply inclined coal seams.In this work,we adopt a perspective centered on localized deformation in coal-rock mining and systematically combine theoretical analyses and extensive data mining of voluminous microseismic data.We describe a mechanical model for the urgently inclined mining of both the sandwiched rock pillar and the roof,explaining the mechanical response behavior of key disaster-prone zones within the deep working face,affected by the dynamics of deep mining.By exploring the spatial correlation inherent in extensive microseismic data,we delineate the“time-space”response relationship that governs the dynamic failure of coal-rock during the progression of the sharply inclined working face.The results disclose that(1)the distinctive coal-rock occurrence structure characterized by a“sandwiched rock pillar-B6 roof”constitutes the origin of rockburst in the southern mining area of the Wudong Coal Mine,with both elements presenting different degrees of deformation localization with increasing mining depth.(2)As mining depth increases,the bending deformation and energy accumulation within the rock pillar and roof show nonlinear acceleration.The localized deformation of deep,steeply inclined coal-rock engenders the spatial superposition of squeezing and prying effects in both the strike and dip directions,increasing the energy distribution disparity and stress asymmetry of the“sandwiched rock pillar-B3+6 coal seam-B6 roof”configuration.This makes worse the propensity for frequent dynamic disasters in the working face.(3)The developed high-energy distortion zone“inner-outer”control technology effectively reduces high stress concentration and energy distortion in the surrounding rock.After implementation,the average apparent resistivity in the rock pillar and B6 roof substantially increased by 430%and 300%,respectively,thus guaranteeing the safe and efficient development of steeply inclined coal seams. 展开更多
关键词 steeply inclined coal seam localized deformation mechanism of induced rockburst prevention and control of rockburst
下载PDF
Demonstration Project of Safe and Efficient Mining Operations in Extra-thick Coal Seam 被引量:1
11
作者 Jin-hui Wang 《Frontiers of Engineering Management》 2016年第3期264-274,297,共12页
Mineable coal reserves in thick and extra-thick seams account for 44% of the total deposit in China. Fullymechanized top-coal caving technology is a new mining method of safe and efficient underground operations in ex... Mineable coal reserves in thick and extra-thick seams account for 44% of the total deposit in China. Fullymechanized top-coal caving technology is a new mining method of safe and efficient underground operations in extra-thick seams in China. The development of fullymechanized top-coal caving technology in China, which was successfully applied in Face 8105 in Tashan Coal Mine, Datong, Shanxi, China, is analyzed in this paper.Studies on movement pattern of top-coal and roof from fully-mechanized top caving face in 14–20 m extra-thick seams have been carried out. A series of key technologies were successfully developed, including strata control technology, equipment for high-efficient and high-recovery top caving operations, and safety guarantee technology for low gas occurrence and high gas emission. As a result, the fully-mechanized top-coal caving Face 8105, with large mining height in Tashan Coal Mine, has achieved a recovery rate of 88.9% and an average equipment operation rate of 92.1%. With coal production of 10.84 Mt in 2011,the demonstration project is a technology and equipment breakthrough for fully-mechanized top-coal caving face in extra-thick coal seams with large mining height. 展开更多
关键词 demonstration project extra-thick coal seam large mining height fully-mechanized top-coal caving recovery rate strata control safety guarantee
原文传递
Geopolymer-based modification of blasting sealing materials and optimization of blasting block size in coal seams of open pit mines
12
作者 Xiaohua Ding Zhongchen Ao +5 位作者 Wei Zhou Hao Qin Zhongao Yang Wen An Xiaoshuang Li Honglin Liu 《International Journal of Mining Science and Technology》 SCIE EI CAS CSCD 2023年第12期1551-1562,共12页
This research proposes the utilization of a geopolymer-based blasting sealing material to improve the profitability of coal sales and reduce the rate of coal fragmentation during blasting in open pit mines.The study f... This research proposes the utilization of a geopolymer-based blasting sealing material to improve the profitability of coal sales and reduce the rate of coal fragmentation during blasting in open pit mines.The study first focused on optimizing the strength of the sealant material and reducing curing time.This was achieved by regulating the slag doping and sodium silicate solution modulus.The findings demonstrated that increasing slag content and improving the material resulted in an early rise in strength while increasing the modulus of the sodium silicate solution extended the curing time.The slag doping level was fixed at 80 g,and the sodium silicate solution modulus was set at 1.5.To achieve a strength of 3.12 MPa,the water/gel ratio was set at 0.5.The initial setting time was determined to be 33 min,meeting the required field test duration.Secondly,the strength requirements for field implementation were assessed by simulating the action time and force destruction process of the sealing material during blasting using ANSYS/LS-DYNA software.The results indicated that the modified material meets these requirements.Finally,the Shengli Open Pit Coal Mine served as the site for the field test.It was observed that the hole-sealing material’s hydration reaction created a laminated and flocculated gel inside it.This enhanced the density of the modified material.Additionally,the pregelatinized starch,functioning as an organic binder,filled the gaps between the gels,enhancing the cohesion and bonding coefficient of the material.Upon analyzing the post-blasting shooting effect diagram using the Split-Desktop software,it was determined that the utilization of the modified blast hole plugging material resulted in a decrease in the rate of coal fragmentation from 33.2%to 21.1%.This reduction exhibited a minimal error of 1.63%when compared to the field measurement,thereby providing further confirmation of the exceptional plugging capabilities of the modified material.This study significantly contributes to establishing a solid theoretical basis for enhancing the blasting efficiency of open pit mines and,in turn,enhancing their economic advantages. 展开更多
关键词 Open pit coal mine coal seam blasting Sealing materials Block size optimization Numerical simulation
下载PDF
In-situ gas contents of a multi-section coal seam in Sydney basin for coal and gas outburst management
13
作者 Zhongbei Li Ting Ren +4 位作者 Dennis Black Ming Qiao Itmam Abedin Jessica Juric Mike Wang 《International Journal of Coal Science & Technology》 EI CAS CSCD 2023年第4期34-46,共13页
The gas content is crucial for evaluating coal and gas outburst potential in underground coal mining. This study focuses on investigating the in-situ coal seam gas content and gas sorption capacity in a representative... The gas content is crucial for evaluating coal and gas outburst potential in underground coal mining. This study focuses on investigating the in-situ coal seam gas content and gas sorption capacity in a representative coal seam with multiple sections (A1, A2, and A3) in the Sydney basin, where the CO_(2) composition exceeds 90%. The fast direct desorption method and associated devices were described in detail and employed to measure the in-situ gas components (Q_(1), Q_(2), and Q_(3)) of the coal seam. The results show that in-situ total gas content (Q_(T)) ranges from 9.48 m^(3)/t for the A2 section to 14.80 m^(3)/t for the A3 section, surpassing the Level 2 outburst threshold limit value, thereby necessitating gas drainage measures. Among the gas components, Q_(2) demonstrates the highest contribution to Q_(T), ranging between 55% and 70%. Furthermore, high-pressure isothermal gas sorption experiments were conducted on coal samples from each seam section to explore their gas sorption capacity. The Langmuir model accurately characterizes CO_(2) sorption behavior, with ft coefcients (R^(2)) greater than 0.99. Strong positive correlations are observed between in-situ gas content and Langmuir volume, as well as between residual gas content (Q_(3)) and sorption hysteresis. Notably, the A3 seam section is proved to have a higher outburst propensity due to its higher Q_(1) and Q_(2) gas contents, lower sorption hysteresis, and reduced coal toughness f value. The insights derived from the study can contribute to the development of efective gas management strategies and enhance the safety and efciency of coal mining operations. 展开更多
关键词 In-situ coal seam gas content Direct desorption method Gas component Sorption capacity coal and gas outburst
下载PDF
Ground fissure development regularity and formation mechanism of shallow buried coal seam mining with Karst landform in Jiaozi coal mine: a case study
14
作者 ZHU Heng-zhong 《Journal of Mountain Science》 SCIE CSCD 2023年第10期3101-3120,共20页
A comprehensive study was undertaken at Jiaozi coal mine to investigate the development regularity of ground fissures in shallow buried coal seam mining with Karst landform,shedding light on the development type,geogr... A comprehensive study was undertaken at Jiaozi coal mine to investigate the development regularity of ground fissures in shallow buried coal seam mining with Karst landform,shedding light on the development type,geographical distribution,dynamic development process,and failure mechanism of these ground fissures by employing field monitoring,numerical simulation,and theoretical analysis.The findings demonstrate that ground fissure development has an obvious feature of subregion,and its geographical distribution is significantly affected by topography.Tensile type,open type,and stepped type are three different categories of ground fissure.Ground fissures emerge dynamically as the panel advances,and they typically develop with a distance of less than periodic weighting step distance in advance of panel advancing position.Ground fissures present the dynamic development feature,temporary fissure has the ability of self-healing.The dynamic development process of ground fissure with closed-distance coal seam repeated mining is expounded,and the development scale is a dynamic development stage of“closure→expansion→stabilized”on the basis of the original development scale.From the perspective of topsoil deformation,the computation model considering two points movement vectors towards two directions of the gob and the ground surface is established,the development criterion considering the critical deformation value of topsoil is obtained.The mechanical model of hinged structure of inclined body is proposed to clarify the ground fissure development,and the interaction between slope activity and ground fissure development is expounded.These research results fulfill the gap of ground fissures about development regularity and formation mechanism,and can contribute to ground fissure prevention and treatment with Karst landform. 展开更多
关键词 Karst landform Shallow buried coal seam Development regularity Formation mechanism Ground fissure Repeated mining
下载PDF
Evaluation of roof cutting by directionally single cracking technique in automatic roadway formation for thick coal seam mining
15
作者 Yubing Gao Qiukai Gai +2 位作者 Xingxing Zhang Xun Xi Manchao He 《International Journal of Coal Science & Technology》 EI CAS CSCD 2023年第5期137-157,共21页
Automatic roadway formation by roof cutting is a sustainable nonpillar mining method that has the potential to increase coal recovery,reduce roadway excavation and improve mining safety.In this method,roof cutting is ... Automatic roadway formation by roof cutting is a sustainable nonpillar mining method that has the potential to increase coal recovery,reduce roadway excavation and improve mining safety.In this method,roof cutting is the key process for stress relief,which significantly affects the stability of the formed roadway.This paper presents a directionally single cracking(DSC)technique for roof cutting with considerations of rock properties.The mechanism of the DSC technique was investi-gated by explicit finite element analyses.The DSC technique and roof cutting parameters were evaluated by discrete element simulation and field experiment.On this basis,the optimized DSC technique was tested in the field.The results indicate that the DSC technique could effectively control the blast-induced stress distribution and crack propagation in the roof rock,thus,achieve directionally single cracking on the roadway roof.The DsC technique for roof cutting with optimized parameters could effectively reduce the deformation and improve the stability of the formed roadway.Field engineering application verified the feasibility and effectiveness of the evaluated DSC technique for roof cutting. 展开更多
关键词 No pillar mining Automatic roadway formation Directionally single cracking Roof cutting Roadway stability-Thick coal seam mining
下载PDF
Arch structure effect of the coal gangue flow of the fully mechanized caving in special thick coal seam and its impact on the loss of top coal 被引量:8
16
作者 Zhang Ningbo Liu Changyou 《International Journal of Mining Science and Technology》 SCIE EI CSCD 2016年第4期593-599,共7页
Based on the characteristics of the top coal thickness of the fully mechanized caving in special thick coal seam,the long distance of coal gangue caving,as well as the different sizes of the coal gangue broken fragmen... Based on the characteristics of the top coal thickness of the fully mechanized caving in special thick coal seam,the long distance of coal gangue caving,as well as the different sizes of the coal gangue broken fragment dimension and spatial variation of drop flow,this paper uses laboratory dispersion simulation experiment and theoretical analysis to study the arch structure effect and its influence rule on the top coal loss in the process of coal gangue flow.Research shows that in the process of coal gangue flow,arch structure can be formed in three types:the lower arch structure,middle arch structure,and upper arch structure.Moreover,the arch structure has the characteristics of dynamic random arch,the formation probability of dynamic random arch with different layers is not the same,dynamic random arch caused the reduction of the top coal fluency;analyzing the dynamic random arch formation mechanism,influencing factors,and the conditions of instability;the formation probability of the lower arch structure is the highest,the whole coal arch and the coal gangue arch structure has the greatest impact on top coal loss.Therefore,to prevent or reduce the formation of lower whole coal arch structure,the lower coal gangue arch structure and the middle whole coal arch structure is the key to reduce the top coal loss.The research conclusion provides theoretical basis for the further improvement of the top coal recovery rate of the fully mechanized caving in extra thick coal seam. 展开更多
关键词 顶煤损失 特厚煤层 综放开采 结构效应 煤矸石 流动 拱结构 顶煤厚度
下载PDF
Further Information of the Associated Li Deposits in the No.6 Coal Seam at Jungar Coalfield, Inner Mongolia, Northern China 被引量:33
17
作者 SUN Yuzhuang ZHAO Cunliang +5 位作者 LI Yanheng WANG Jinxi ZHANG Jianya JIN Zhe LIN Mingyue Wolfgang KALKREUTH 《Acta Geologica Sinica(English Edition)》 SCIE CAS CSCD 2013年第4期1097-1108,共12页
Total 138 coal samples and 14 parting samples were taken from the No. 6 Seam of the Jungar Coalfield, Inner Mongolia. These samples were analysed by optical microscopy, sequential chemical extraction procedure (SCEP... Total 138 coal samples and 14 parting samples were taken from the No. 6 Seam of the Jungar Coalfield, Inner Mongolia. These samples were analysed by optical microscopy, sequential chemical extraction procedure (SCEP), inductively coupled plasma mass spectrometry (ICP-MS), X-ray powder diffraction (XRD), and scanning electron microscope in conjunction with an energy-dispersive X-ray spectrometer (SEM-EDX) analysis. The results indicate that the Li contents have reached the industrial grade of the coal associated Li deposit, and the total Li reserves have reached 2406600 tons, that is, 5157000 tons Li2O in the No. 6 seam in the Jungar Coalfield. The sequential chemical extraction procedure results suggest that the Li concentration is mainly related to inorganic matter. The minerals in the coals consist of kaolinite, boehmite, chlorite-group mineral, quartz, calcite, pyrite, siderite and amorphous clay material. Some Li could be absorbed by clay minerals in the Li-bearing coal seam. The chlorite phase?could be?most likely the host for a part of Li. The Yinshan Oldland should be the most possible source of Li of the coal. 展开更多
关键词 Li deposit industrial grade coal seam GEOCHEMISTRY Jungar coalfield
下载PDF
Hydraulic fracture initiation theory for a horizontal well in a coal seam 被引量:18
18
作者 Hou Bing Chen Mian +2 位作者 Wang Zheng Yuan Jianbo Liu Ming 《Petroleum Science》 SCIE CAS CSCD 2013年第2期219-225,共7页
A series of experiments were pertbrmed to determine rock mechanical parameters related to hydraulic fracturing of coal. The effect of confining pressure and pore pressure on the strength of coal was stt, died. Experim... A series of experiments were pertbrmed to determine rock mechanical parameters related to hydraulic fracturing of coal. The effect of confining pressure and pore pressure on the strength of coal was stt, died. Experimental results show that the coal seam in the study areas has a relatively low elastic modulus, high Poisson's ratio, high fragility and is easily broken and compressed. The coal seam is considered as a transversely isotropic medium, since the physical properties in the direction of bedding plane and orthogonal to the bedding plane vary markedly. Based on the generalized plane strain model, stress distribution for an arbitrarily orientated wellbore in the coal seam was determined. In a horizontal well, hydraulic fracturing was lbund to initiate in the coal seam mass due to tensile failure, or from cleats due to shear or tensile failure. For those coal seams with abundant natural cleats, hydraulic fracture initiation can be induced by any of these mechanisms. In this study, hydraulic fracture initiation criteria tbr a horizontal well in a coal seam were established. 展开更多
关键词 Hydraulic fracturing coal seam transversely isotropic fracture initiation CLEAT naturalfracture
下载PDF
The impact of cleats on hydraulic fracture initiation and propagation in coal seams 被引量:14
19
作者 Fan Tiegang Zhang Guangqing Cui Jinbang 《Petroleum Science》 SCIE CAS CSCD 2014年第4期532-539,共8页
Cleats are systematic, natural fractures in coal seams. They account for most of the permeability and much of the porosity of coalbed methane reservoirs and can have a significant effect on the success of hydraulic fr... Cleats are systematic, natural fractures in coal seams. They account for most of the permeability and much of the porosity of coalbed methane reservoirs and can have a significant effect on the success of hydraulic fracturing stimulation. Laboratory hydraulic fracturing experiments were conducted on coal blocks under true tri-axial stress to simulate fracturing stimulation of coal seams. Fractures were initiated by injecting a water gel with luminous yellow fluorescent dye into an open hole section of a wellbore. The impact of cleats on initiation and propagation of hydraulic fractures in coal seams is discussed. Three types of hydraulic fracture initiation and propagation pattern were observed in this study: 1) The hydraulic fracture initiated and then grew along the cleat. 2) The hydraulic fracture initiated along a butt cleat or a fracture (natural or induced by drilling) oriented roughly in the minimum horizontal stress direction, then turned to propagate along the first face cleat that it encountered or gradually turned towards the maximum horizontal stress direction. 3) The hydraulic fracture initiated perpendicular to the minimum stress and, when it encountered a face cleat, tended to propagate along the cleats if the extension direction does not deviate greatly (〈20° as determined in this paper) from the maximum horizontal stress direction. When a coal seam is hydraulically fractured, the resulting fracture network is controlled by the combined effect of several factors: cleats determine the initiation and extension path of the fracture, the in-situ stress state dominates the main direction of the fracture zone and bedding planes impede fracture height growth. 展开更多
关键词 Cleats coalbed methane hydraulic fracturing coal seam simulation experiment
下载PDF
Rockburst mechanism in soft coal seam within deep coal mines 被引量:15
20
作者 Zhang Junfei Jiang Fuxing +2 位作者 Yang Jianbo Bai Wushuai Zhang Lei 《International Journal of Mining Science and Technology》 SCIE EI CSCD 2017年第3期551-556,共6页
A number of rockburst accidents occurring in soft coal seams have shown that the rockburst mechanism involved in soft coal seams is significantly different from that involved in hard coal seams. Therefore, the method ... A number of rockburst accidents occurring in soft coal seams have shown that the rockburst mechanism involved in soft coal seams is significantly different from that involved in hard coal seams. Therefore, the method used to evaluate rockburst in hard coal seams is not applicable to soft coal seams. This paper established an energy integral model for the rockburst-inducing area and a friction work calculation model for the plastic area. If the remaining energy after the coal seam is broken in the rockburstinducing area is greater than the friction work required for the coal to burst out, then a rockburst accident will occur. Mechanisms of ‘‘quaking without bursting" and ‘‘quaking and bursting" are clarified for soft coal seams and corresponding control measures are proposed as the optimization of roadway layouts and use of ‘‘three strong systems"(strong de-stressing, strong supporting, and strong monitoring). 展开更多
关键词 Soft coal seam ROCKBURST Plastic zone Elastic strain energy Friction work
下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部