期刊文献+
共找到938篇文章
< 1 2 47 >
每页显示 20 50 100
Flow characteristics and Shannon entropy analysis of dense-phase pneumatic conveying under high pressure
1
作者 赵长遂 梁财 +3 位作者 陈晓平 蒲文灏 鹿鹏 范春雷 《Journal of Southeast University(English Edition)》 EI CAS 2007年第4期609-614,共6页
Experiments of dense-phase pneumatic conveying of pulverized coal using nitrogen are carded out in an experimental test facility with the conveying pressure up to 4. 0 MPa and the gas-solid ratio up to 450 kg/m^3. The... Experiments of dense-phase pneumatic conveying of pulverized coal using nitrogen are carded out in an experimental test facility with the conveying pressure up to 4. 0 MPa and the gas-solid ratio up to 450 kg/m^3. The influences of different conveying differential pressures, coal moisture contents, gas volume flow rates and superficial velocities on the solid-gas ratios are investigated. Shannon entropy analysis of pressure fluctuation time series is developed to reveal the flow characteristics. Through investigation of the distribution of the Shannon entropy under different conditions, the flow stability and the evolutional tendency of the Shannon entropy in different regimes and regime transition processes are discovered, and the relationship between the Shannon entropy and the flow regimes is also established. The results indicate that the solid-gas ratio and the Shannon entropy rise with the increase in conveying differential pressure. The solid-gas ratio and the Shannon entropy reveal preferable regularity with gas volume flow rates. The Shannon entropy is different for different flow regimes, and can be used to identify the flow regimes. Both mass flow rate and the Shannon entropy decrease with the increase in moisture contents. The Shannon entropy analysis is a feasible approach for researching the characteristics of flow regimes, flow stability and flow regime transitions in dense-phase pneumatic conveying under high pressure. 展开更多
关键词 pneumatic conveying high pressure dense-phase solid-gas ratio Shannon entropy
下载PDF
Real Gas Effects on Charging and Discharging Processes of High Pressure Pneumatics 被引量:6
2
作者 LUO Yuxi WANG Xuanyin GE Yaozheng 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2013年第1期61-68,共8页
The high pressure pneumatic system has been applied to special industries. It may cause errors when we analyze high pressure pneumatics under ideal gas assumption. However, the real gas effect on the performances of h... The high pressure pneumatic system has been applied to special industries. It may cause errors when we analyze high pressure pneumatics under ideal gas assumption. However, the real gas effect on the performances of high pressure pneumatics is seldom investigated. In this paper, the real gas effects on air enthalpy and internal energy are estimated firstly to study the real gas effect on the energy conversion. Under ideal gas assumption, enthalpy and internal energy are solely related to air temperature. The estimation result indicates that the pressure enthalpy and pressure internal energy of real pneumatic air obviously decrease the values of enthalpy and internal energy for high pressure pneumatics, and the values of pressure enthalpy and pressure internal energy are close. Based on the relationship among pressure, enthalpy and internal energy, the real gas effects on charging and discharging processes of high pressure pneumatics are estimated, which indicates that the real gas effect accelerates the temperature and pressure decreasing rates during discharging process, and decelerates their increasing rates during charging process. According to the above analysis, and for the inconvenience in building the simulation model for real gas and the difficulty of measuring the detail thermal capacities of pneumatics, a method to compensate the real gas effect under ideal gas assumption is proposed by modulating the thermal capacity of the pneumatic container in simulation. The experiments of switching expansion reduction (SER) for high pressure pneumatics are used to verify this compensating method. SER includes the discharging process of supply tanks and the charging process of expansion tank. The simulated and experimental results of SER are highly consistent. The proposed compensation method provides a convenient way to obtain more realistic simulation results for high pressure pneumatics. 展开更多
关键词 real gas effect pneumatic simulation model high pressure pneumatics
下载PDF
Asymmetric Fuzzy Control of a Positive and Negative Pneumatic Pressure Servo System 被引量:3
3
作者 Gang Yang Jing-Min Du +1 位作者 Xiao-Yun Fu Bao-Ren Li 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2017年第6期1438-1446,共9页
The pneumatic pressure control systems have been used in some fields. However, the researches on pneumatic pressure control mainly focus on constant pressure regulation. Poor dynamic characteristics and strong nonline... The pneumatic pressure control systems have been used in some fields. However, the researches on pneumatic pressure control mainly focus on constant pressure regulation. Poor dynamic characteristics and strong nonlinearity of such systems limit its application in the field of pressure tracking control. In order to meet the demand of generating dynamic pressure signal in the application of the hardware-in-the-loop simulation of aerospace engineering, a positive and negative pneumatic pressure servo system is provided to implement dynamic adjustment of sealed chamber pressure. A mathematical model is established with simulation and experiment being implemented afterwards to discuss the characteristics of the system, which shows serious asymmetry in the process of charging and discharging. Based on the analysis of the system dynamics, a fuzzy proportional integral derivative (PID) controller with asymmetric fuzzy compensator is proposed. Different from conventional adjusting mecha- nisms employing the error and change in error of the controlled variable as input parameters, the current cham- ber pressure and charging or discharging state are chosen as inputs of the compensator, which improves adaptability. To verify the effectiveness and performance of the pro- posed controller, the comparison experiments tracking sinusoidal and square wave commands are conducted. Experimental results show that the proposed controller can obtain better dynamic performance and relatively consis- tent control performance across the scope of work (2-140 kPa). The research proposes a fuzzy control method to overcome asymmetry and enhance adaptability for the positive and negative pneumatic pressure servo system. 展开更多
关键词 pneumatic pressure control system Positiveand negative pressure Asymmetric control Fuzzy control
下载PDF
Pneumatic resistance network analysis and dimension optimization of high pressure electronic pneumatic pressure reducing valve 被引量:2
4
作者 徐志鹏 王宣银 《Journal of Central South University》 SCIE EI CAS 2011年第3期666-671,共6页
The structure and working principle of a self-deigned high pressure electronic pneumatic pressure reducing valve (EPPRV) with slide pilot are introduced.The resistance value formulas and the relationship between the r... The structure and working principle of a self-deigned high pressure electronic pneumatic pressure reducing valve (EPPRV) with slide pilot are introduced.The resistance value formulas and the relationship between the resistance and pressure of three typical pneumatic resistances are obtained.Then,the method of static characteristics analysis only considering pneumatic resistances is proposed,the resistance network from gas supply to load is built up,and the mathematical model is derived from the flow rate formulas and flow conservation equations,with the compressibility of high pressure gas and temperature drop during the expansion considered in the model.Finally,the pilot spool displacement of 1.5 mm at an output pressure of 15MPa and the enlarging operating stroke of the pilot spool are taken as optimization targets,and the optimization is carried out based on genetic algorithm and the model mentioned above.The results show that the static characteristics of the EPPRV are significantly improved.The idea of static characteristics analysis and optimization based on pneumatic resistance network is valuable for the design of pneumatic components or system. 展开更多
关键词 high pressure pressure reducing valve pneumatic resistance dimension optimization genetic algorithm
下载PDF
Novel miniature pneumatic pressure regulator for hopping robots 被引量:1
5
作者 SAMO Saifullah 马树元 SAMEH Bdran 《Journal of Beijing Institute of Technology》 EI CAS 2015年第1期42-48,共7页
A novel miniature pressure regulator is fabricated and studied. The regulator can easily be integrated into portable mechatronics or miniature robotic applications because of its lightweight and compact size. An espec... A novel miniature pressure regulator is fabricated and studied. The regulator can easily be integrated into portable mechatronics or miniature robotic applications because of its lightweight and compact size. An especial poppet is designed to minimize its size and to withstand high-pressure. The pressure regulator is designed for a hopping robot which is powered by a combustion system. The hopping robot has great moving capacities such as jumping over big obstacles, wails and dit- ches. The regulator helps the hopping robot to decrease size and weight, and to sustain high pres- sure of oxygen and fuel tank. It will maintain constant output pressure to obtain suitable proportion of oxygen and fuel in the combustion cylinder. Dynamic simulation of the miniature pneumatic pres- sure regulator is performed. Experiments on prototype of miniature pneumatic pressure regulator are also carried out to validate the performance and satisfied performance is obtained. 展开更多
关键词 hopping robot poppet valve pneumatic pressure regulator pressure control
下载PDF
Pressure observer based adaptive robust trajectory tracking control of a parallel manipulator driven by pneumatic muscles 被引量:1
6
作者 ZHU Xiao-cong TAO Guo-liang CAO Jian 《Journal of Zhejiang University-Science A(Applied Physics & Engineering)》 SCIE EI CAS CSCD 2007年第12期1928-1937,共10页
This paper presents a pressure observer based adaptive robust controller (POARC) for posture trajectory tracking of a parallel manipulator driven by three pneumatic muscles without pressure sensors. Due to model error... This paper presents a pressure observer based adaptive robust controller (POARC) for posture trajectory tracking of a parallel manipulator driven by three pneumatic muscles without pressure sensors. Due to model errors of the static forces and friction forces of pneumatic muscles, simplified average flow rate characteristics of valves, unknown disturbances of entire system, and unmeasured pressures, there exist rather severe parametric uncertainties, nonlinear uncertainties and dynamic uncertainties in modeling of the parallel manipulator. A nonlinear pressure observer is constructed to estimate unknown pressures on the basis of a single-input-single-output (SISO) decoupling model that is simplified from the actual multiple-input-multiple-output (MIMO) coupling model of the parallel manipulator. Then, an adaptive robust controller integrated with the pressure observer is developed to accomplish high precision posture trajectory tracking of the parallel manipulator. The experimental results indicate that the system with the proposed POARC not only achieves good control accuracy and smooth movement but also maintains robustness to disturbances. 展开更多
关键词 pneumatic muscle Parallel manipulator pressure observer Adaptive robust control Trajectory tracking
下载PDF
Design and Experimental Evaluation of PID Controller for Digital Electro-Pneumatic Cabin Pressure Control System 被引量:3
7
作者 Nie Jinfang Pan Quan +2 位作者 Shen Hao Song Zhitao Zhang Dalin 《Transactions of Nanjing University of Aeronautics and Astronautics》 EI CSCD 2016年第5期576-583,共8页
The performance of the designed digital electro-pneumatic cabin pressure control system for the cabin pressure schedule of transport aircraft is investigated.For the purpose of this study,an experimental setup consist... The performance of the designed digital electro-pneumatic cabin pressure control system for the cabin pressure schedule of transport aircraft is investigated.For the purpose of this study,an experimental setup consisting of a simulated hermetic cabin and altitude simulation chamber is configured for cabin pressure control system operation.A series of experimental tests are executed to evaluate the performance of the cabin pressure control system.The parameters of the PID controller are optimized.In the optimization process,the variation regularity of the rate of cabin pressure change under various conditions is considered.An approach to prioritize the control of the rate of change of cabin pressure based on the flight status model is proposed and verified experimentally.The experimental results indicate that the proposed approach can be adopted for the designed digital electro-pneumatic cabin pressure control system to obtain a better cabin pressure schedule and rate of cabin pressure change. 展开更多
关键词 CABIN pressure control digital electro-pneumatic PID controller
下载PDF
Concentric Annular Clearance-Controllable Pressure Characteristics Research of a High Pressure Pneumatic Pressure Assembly
8
作者 WANG Xuanyin XU Zhipeng 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2011年第1期121-126,共6页
High pressure is an important development orientation in pneumatic field,since it can not only improve dynamic characteristics of pneumatic system but also decrease the size of components and mounting space.Due to the... High pressure is an important development orientation in pneumatic field,since it can not only improve dynamic characteristics of pneumatic system but also decrease the size of components and mounting space.Due to the advantages of high energy density and high instant expansibility,high pressure gas has been widely used in many applications.However,systematic researches are lacked especially in pressure characteristics which are very important in pneumatic system at present.In a high pressure pneumatic system,the pressure of a fixed cavity with annular clearance needs to be controlled within a wide range,so a single stage proportional slide valve is proposed to satisfy the requirements of high pressure and low flow rate.First,working principle and structure of the pressure assembly and the slide valve are introduced.Then mathematical model of the high pressure pneumatic system is built up;controllable pressure range is simulated,and influence of uncertain factors,such as fit clearance of the pressure valve and the cavity on controllable pressure,is discussed.Finally,a test bench of the pressure assembly is built up,and the controllable pressure and step response experiments are carried out.Both simulation and experimental results show that the designed slide valve can satisfy the requirements well.The proposed clearance presumption method based on simulation and experimental results is valuable for indirect measurement of processing tolerance. 展开更多
关键词 high pressure pneumatic concentric annular clearance controllable pressure slide valve LEAKAGE
下载PDF
PRESSURE DROP IN THE VERTICAL PNEUMATIC PIPE FOR POWDER CONVEYING
9
作者 于荣宪 王文琪 《Journal of Southeast University(English Edition)》 EI CAS 1989年第1期81-87,共7页
Based on the former research work of the authors,the resistance of differentsolid particle suspension flow in a vertical pipe is analysed,and investigatedexperimentally.The applicable formulas of pressure drop are pre... Based on the former research work of the authors,the resistance of differentsolid particle suspension flow in a vertical pipe is analysed,and investigatedexperimentally.The applicable formulas of pressure drop are presented.Two types of par-ticles,talcum powder and glass beads,are convcyed in the test which has been carried outat various air vclocities of 10 to 28 m/s and at the ratio of solids-air mass flow rateranged from 0 to 2.The experimental results show a good agreement with the calculatedones. 展开更多
关键词 solid PANICLES pressure drop/vertical PIPE pneumatic transport
下载PDF
Research on the Pressure Regulator Effect on a Pneumatic Vibration Isolation System
10
作者 Yan Shi Shaofeng Xu +2 位作者 Zhibo Sun Yulong Nie Yixuan Wang 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2022年第6期275-285,共11页
The pneumatic vibration isolator(PVI)plays an increasingly important role in precision manufacturing.In this paper,aiming to detect the performance of the pressure regulator in the PVI system,a PVI testing system with... The pneumatic vibration isolator(PVI)plays an increasingly important role in precision manufacturing.In this paper,aiming to detect the performance of the pressure regulator in the PVI system,a PVI testing system with a pressure regulator is designed and developed.Firstly,the structure of the pneumatic spring is presented and analyzed,and the nonlinear stiffness is obtained based on the ideal gas model and material mechanics.Then,according to the working principle and continuity equations of ideal airflow,a dynamic model of the PVI system with a pressure regulator is established.Through the simulation analysis,the vibration isolation performance is improved with the efficient and precise pressure regulator.The average values of both the vibration velocity and transmission rate decrease when the vibration is set to 4,10,20 and 40 Hz,respectively.The experiments demonstrate the reliability and effectiveness of the pressure regulator.This achievement will become an important basis for future research concerning precision manufacturing. 展开更多
关键词 pneumatic vibration isolators pressure regulator Transmission rate Rubber stiffness
下载PDF
Lumped Parameter Mass Flow Rate and Pressure Control Characteristics Model for High-Speed Pneumatic PWM on/off Valve
11
作者 向忠 胡旭东 +1 位作者 刘昊 汝晶炜 《Journal of Donghua University(English Edition)》 EI CAS 2014年第3期293-303,共11页
Aiming at solving the problem of strong coupling characteristic of the key parameters of high-speed pneumatic pulse width modulation( PWM) on / off valve, a general lumped parameter mathematical model based on the val... Aiming at solving the problem of strong coupling characteristic of the key parameters of high-speed pneumatic pulse width modulation( PWM) on / off valve, a general lumped parameter mathematical model based on the valves time periods was well developed. With this model,the mass flow rate and dynamic pressure characteristics of constant volumes controlled by high-speed pneumatic PWM on /off valves was well described. A variable flow rate coefficient model was proposed to substitute for the constant one used in most of the prior works to investigate PWM on /off valves' dynamical pressure response, and a formula for disclosing the inherent relationship among the PWM command signal,static mass flow rate,and sonic conductance of the valve was newly derived.Finally,an extensive set of analytical experimental comparisons were implemented to verify the validity of the proposed mathematica model. With the proposed model, PWM on /off valves' characteristics,such as mass flow rate,step pressure response of the valve control system,mean pressure and ripple amplitude,not only in the linear range,but also in the nonlinear range can be wel predicted; Good agreement between measured and calculated results was obtained,which proved that the model is helpful for designing a control strategy in a closed loop control system. 展开更多
关键词 lumped parameter model pneumatic on/off valve pulse width modulation(PWM) mass flow rate pressure characteristic
下载PDF
About the Change in Air Pressure in the Pipeline during the Pneumatic Transportation of Cotton
12
作者 Farhod Kholmirzaev Maftuna Yusupova +1 位作者 Abdul-Malik Kayumov Olimjon Sarimsakov 《Engineering(科研)》 CAS 2022年第7期228-234,共7页
The article is devoted to the study of the issues of determining the patterns of changes in air pressure along the length of a pneumatic transmission pipeline for raw cotton at different flow parameters and different ... The article is devoted to the study of the issues of determining the patterns of changes in air pressure along the length of a pneumatic transmission pipeline for raw cotton at different flow parameters and different pipeline diameters. Theoretical studies have proved the reduction of static and total pressure along the line of pneumatic cotton transportation. The dependence of the pressure change on the diameter of the transport line and the aerodynamic drag of the pipeline is obtained. The results obtained are recommended for use in the design of raw cotton pneumatic transport systems. 展开更多
关键词 pneumatic Conveying PIPELINE Raw Сotton Air pressure A Fan
下载PDF
An Experimental Determination of the Supply and Exhaust Pressures in an Electro-Pneumatic Clutch Actuation System
13
作者 Paul-Darlington Ibemezie Ndubuisi Innocent Ifeanyi Eneh Anthony Chidolue Nnaji 《International Journal of Modern Nonlinear Theory and Application》 2022年第3期53-59,共7页
Inlet and outlet orifices in an actuation chamber are sources through which the supply and exhaust pressures pass during the actuation process in clutch systems. They are key ingredients in an actuation chamber and ar... Inlet and outlet orifices in an actuation chamber are sources through which the supply and exhaust pressures pass during the actuation process in clutch systems. They are key ingredients in an actuation chamber and are very phenomenal in heavy-duty vehicle operation. It is these pressures that initiate linear or rotary motions in drive systems. The pressure actions are processed in an enclosure termed an actuation chamber. Oftentimes, the forces or pressures produced in an actuation chamber are unknown and immeasurable owing to a lack of precise instruments to accomplish them. This challenge can only be approached via an improvised technique that requires experimentation. This is precisely what this presentation is all about. The knowledge of these parameters is important in the study of the actuation process in electro-pneumatic clutch systems of heavy-duty vehicles. The study was done with a Mercedes Benz Actros Truck Model MP 2, 2031 Actuator chamber. An empirical and analytical approach was adopted. Meter rule, Venire Callipers and Mass Spring Balance were deployed for the experiments. Piston coil or spring, clutch distance in the actuator, the cross-sectional diameter of the actuator, and displacement in the free lengths of the coils among others were measured. The results of the experiments were analysed and used to determine the values of the supply (inlet) and exhaust (outlet) pressures which results stood at 9.61 bars and 11.299 bars, respectively. 展开更多
关键词 ACTUATION CHAMBER Electro-pneumatic Instruments pressure
下载PDF
Analysis of Power Matching on Energy Savings of a Pneumatic Rotary Actuator Servo-Control System 被引量:3
14
作者 Yeming Zhang Hongwei Yue +1 位作者 Ke Li Maolin Cai 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2020年第2期87-99,共13页
When saving energy in a pneumatic system,the problem of energy losses is usually solved by reducing the air supply pressure.The power-matching method is applied to optimize the air-supply pressure of the pneumatic sys... When saving energy in a pneumatic system,the problem of energy losses is usually solved by reducing the air supply pressure.The power-matching method is applied to optimize the air-supply pressure of the pneumatic system,and the energy-saving effect is verified by experiments.First,the experimental platform of a pneumatic rotary actuator servo-control system is built,and the mechanism of the valve-controlled cylinder system is analyzed.Then,the output power characteristics and load characteristics of the system are derived,and their characteristic curves are drawn.The employed air compressor is considered as a constant-pressure source of a quantitative pump,and the power characteristic of the system is matched.The power source characteristic curve should envelope the output characteristic curve and load characteristic curve.The minimum gas supply pressure obtained by power matching represents the optimal gas supply pressure.The comparative experiments under two different gas supply pressure conditions show that the system under the optimal gas supply pressure can greatly reduce energy losses. 展开更多
关键词 pneumatic rotary actuator Energy savings Gas supply pressure Characteristic curve Power matching
下载PDF
Simulation and experimental study of high pressure switching expansion reduction considering real gas effect 被引量:2
15
作者 罗语溪 张彦军 +2 位作者 高玉宝 王宣银 徐志鹏 《Journal of Central South University》 SCIE EI CAS 2014年第6期2253-2261,共9页
Switching expansion reduction(SER)uses a switch valve instead of the throttle valve to realize electronically controlled pressure reduction for high pressure pneumatics.A comprehensive and interactive pneumatic simula... Switching expansion reduction(SER)uses a switch valve instead of the throttle valve to realize electronically controlled pressure reduction for high pressure pneumatics.A comprehensive and interactive pneumatic simulation model according to the experimental setup of SER has been built.The mathematical model considers heat exchanges,source air pressure and temperature,environmental temperatures and heat transfer coefficients variations.In addition,the compensation for real gas effect is used in the model building.The comparison between experiments and simulations of SER indicates that,to compensate the real gas effect in high pressure discharging process,the thermal capacity of air supply container in simulation should be less than the actual value.The higher the pressure range,the greater the deviation.Simulated and experimental results are highly consistent within pressure reduction ratios ranging from 1.4 to 20 and output air mass flow rates ranging from 3.5 to 132 g/s,which verifies the high adaptability of SER and the validity of the mathematic model and the compensation method. 展开更多
关键词 high pressure pneumatics pressure reduction dynamic simulation model real gas effect
下载PDF
The Movement of a Mixture of Cotton with an Air Stream during Pneumatic Transport by Pipeline of Variable Cross Section 被引量:3
16
作者 Ibrohimjon Tursunov Nodira Rajapova +1 位作者 Olimjon Sarimsakov Botirjon Mardonov 《Engineering(科研)》 2019年第8期531-540,共10页
The article considers the movement of a mixture of air and raw cotton through a pipeline with a variable cross-section as a multi-speed heterogeneous medium. The regularities of the movement of components inside the p... The article considers the movement of a mixture of air and raw cotton through a pipeline with a variable cross-section as a multi-speed heterogeneous medium. The regularities of the movement of components inside the pipeline, the equation of change in the porosity of cotton, air pressure and component velocities in time and along the transportation line are obtained. It was found that in the initial 20 - 25 m part of the pneumatic transport pipe there is a sharp decrease in pressure and air flow velocity, while the speed of cotton increases rapidly due to which there is a strong deformation of cotton stretching under the influence of aerodynamic force, which occurs due to the difference in the velocities of the components of the mixture, as a result of which the cotton loosens, and its porosity increases intensively. 展开更多
关键词 AIR pressure Fiber PIPELINE Porosity pneumatic Transportation RAW COTTON The MIXTURE
下载PDF
Development of a Novel Parallel-spool Pilot Operated High-pressure Solenoid Valve with High Flow Rate and High Speed 被引量:6
17
作者 DONG Dai LI Xiaoning 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2015年第2期369-378,共10页
High-pressure solenoid valve with high flow rate and high speed is a key component in an underwater driving system.However,traditional single spool pilot operated valve cannot meet the demands of both high flow rate a... High-pressure solenoid valve with high flow rate and high speed is a key component in an underwater driving system.However,traditional single spool pilot operated valve cannot meet the demands of both high flow rate and high speed simultaneously.A new structure for a high pressure solenoid valve is needed to meet the demand of the underwater driving system.A novel parallel-spool pilot operated high-pressure solenoid valve is proposed to overcome the drawback of the current single spool design.Mathematical models of the opening process and flow rate of the valve are established.Opening response time of the valve is subdivided into 4 parts to analyze the properties of the opening response.Corresponding formulas to solve 4 parts of the response time are derived.Key factors that influence the opening response time are analyzed.According to the mathematical model of the valve,a simulation of the opening process is carried out by MATLAB.Parameters are chosen based on theoretical analysis to design the test prototype of the new type of valve.Opening response time of the designed valve is tested by verifying response of the current in the coil and displacement of the main valve spool.The experimental results are in agreement with the simulated results,therefore the validity of the theoretical analysis is verified.Experimental opening response time of the valve is 48.3 ms at working pressure of 10 MPa.The flow capacity test shows that the largest effective area is 126 mm2 and the largest air flow rate is 2320 L/s.According to the result of the load driving test,the valve can meet the demands of the driving system.The proposed valve with parallel spools provides a new method for the design of a high-pressure valve with fast response and large flow rate. 展开更多
关键词 high-pressure pneumatic solenoid valve parallel-spool high flow rate high speed opening response time
下载PDF
Depicting the role of gas–solid interactions on the hydrodynamics of converging pneumatic riser
18
作者 Rashmi Dhurandhar Sumit H.Dhawane +1 位作者 Jyoti Prakash Sarkar Bimal Das 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2022年第2期190-195,共6页
The understanding of the flow characteristics and effect of gas–solid interactions in pneumatic risers is fundamental to investigate to ensure effective design cost-effective operation.Thus,to understand the effect o... The understanding of the flow characteristics and effect of gas–solid interactions in pneumatic risers is fundamental to investigate to ensure effective design cost-effective operation.Thus,to understand the effect of gas–solid interactions on the hydrodynamics of newly proposed conversing risers,this study mainly focused on predicting pressure drop in the dilute phase pneumatic conveying system.The experiments were conducted in a converging riser having a convergence angle of 0.2693°.Various solid particles such as sago,black mustard,and alumina have been considered to study the effect of particle sizes and density on the pressure drop.The experimental outcomes indicate that the total pressure drop increases with an increase in the solid density and gas mass flow rate.Moreover,smaller particle sizes are also increased the pressure drop.An empirical correlation is developed for the prediction of total pressure dropΔPTin converging pneumatic riser via dimensional analysis.All dependent variables such as particle and air density,drag force,acceleration due to gravity,the mass flow rate of air and particle,the diameter of particle and converging riser,the height of converging riser were considered to develop the empirical correlation.The established relationship is tested,and experimental data have been fitted for its validation.The estimated relative error of less than 0.05 proved the significance of the developed correlation.Hence,it can be stated that the established relationship is useful in studying the effects of various parameters on the pressure drop across the length of the conversing riser. 展开更多
关键词 pneumatic conveying pressure drop Converging riser Gas-solid dynamics
下载PDF
Investigation on Pressure Drop of Fluid-Solid Mixture Flow through Pipes Using CFD and SK Model
19
作者 Miller Jothi Redae Haimanot Udaya Kumar 《Journal of Applied Mathematics and Physics》 2019年第1期218-232,共15页
The carrier fluid (air or water) is used to transport solid material from the source place to its destination point through pipeline. Using air as carrier fluid to transport solid material through pipeline is called P... The carrier fluid (air or water) is used to transport solid material from the source place to its destination point through pipeline. Using air as carrier fluid to transport solid material through pipeline is called Pneumo transport, whereas transporting material with water or any other liquid through pipeline is called as hydraulic transport. A large number of installations are now available globally to transport solid materials to short, medium, and long distances using water/air as carrier fluid. However, the design of such system of pipeline is still an empirical art. In the present investigation, one generalized mathematical model developed by Shrivastava and Kar (SK Model) and CFD models were used and compared with experimental results for pneumatic and hydraulic transport of granular solids. The motivation of present work is to find the accuracy of SK model based on analytical, empirical and semi-empirical for the prediction of pressure drop and comparing the result with CFD based on mathematical equation for the mixture flow in the horizontal and vertical pipe lines. The comparison of pressure drop results obtained by using SK model and CFD model were validated with the experimental results for pneumatic and hydraulic transport of solids through. From the comparison results, it was observed that the results of pressure drop predicted by SK model are more accurate than the CFD models for all the cases considered. 展开更多
关键词 pressure DROP SK MODEL CFD Models Hydraulic and pneumatic Transport Solid and Fluid FLOW
下载PDF
Application of Nonlinear Friction Compensation to Pneumatic Positioning
20
作者 杨青海 河合素直 曾祥荣 《Journal of Harbin Institute of Technology(New Series)》 EI CAS 1995年第2期28-32,共5页
For a pneumatic actuator,precise positioning is difficult to obtain because of the compressibility of air and the static friction and Coulomb friction.This paper develops a nonlinear friction compensation scheme for p... For a pneumatic actuator,precise positioning is difficult to obtain because of the compressibility of air and the static friction and Coulomb friction.This paper develops a nonlinear friction compensation scheme for precise positioning of a pneumatic system.This Scheme is tested by simulation and experiment and is shown to be effective. 展开更多
关键词 ss:pneumatic CYLINDER POSITION control nonlinear FRICTION pressure feedback compensation
下载PDF
上一页 1 2 47 下一页 到第
使用帮助 返回顶部