期刊文献+
共找到52篇文章
< 1 2 3 >
每页显示 20 50 100
Deformation monitoring of long-span railway bridges based on SBAS-InSAR technology 被引量:1
1
作者 Lv Zhou Xinyi Li +4 位作者 Yuanjin Pan Jun Ma Cheng Wang Anping Shi Yukai Chen 《Geodesy and Geodynamics》 EI CSCD 2024年第2期122-132,共11页
The deformation monitoring of long-span railway bridges is significant to ensure the safety of human life and property.The interferometric synthetic aperture radar(In SAR)technology has the advantage of high accuracy ... The deformation monitoring of long-span railway bridges is significant to ensure the safety of human life and property.The interferometric synthetic aperture radar(In SAR)technology has the advantage of high accuracy in bridge deformation monitoring.This study monitored the deformation of the Ganjiang Super Bridge based on the small baseline subsets(SBAS)In SAR technology and Sentinel-1A data.We analyzed the deformation results combined with bridge structure,temperature,and riverbed sediment scouring.The results are as follows:(1)The Ganjiang Super Bridge area is stable overall,with deformation rates ranging from-15.6 mm/yr to 10.7 mm/yr(2)The settlement of the Ganjiang Super Bridge deck gradually increases from the bridge tower toward the main span,which conforms to the typical deformation pattern of a cable-stayed bridge.(3)The sediment scouring from the riverbed cause the serious settlement on the bridge’s east side compared with that on the west side.(4)The bridge deformation negatively correlates with temperature,with a faster settlement at a higher temperature and a slow rebound trend at a lower temperature.The study findings can provide scientific data support for the health monitoring of long-span railway bridges. 展开更多
关键词 SBAS-InSAR Long-span railway bridge Deformation monitoring bridge structure Time series deformation
下载PDF
A discussion about the limitations of the Eurocode’s high-speed load model for railway bridges
2
作者 Gonçalo Ferreira Pedro Montenegro +2 位作者 JoséRui Pinto António Abel Henriques Rui Calçada 《Railway Engineering Science》 EI 2024年第2期211-228,共18页
High-speed railway bridges are subjected to normative limitations concerning maximum permissible deck accelerations.For the design of these structures,the European norm EN 1991-2 introduces the high-speed load model(H... High-speed railway bridges are subjected to normative limitations concerning maximum permissible deck accelerations.For the design of these structures,the European norm EN 1991-2 introduces the high-speed load model(HSLM)—a set of point loads intended to include the effects of existing high-speed trains.Yet,the evolution of current trains and the recent development of new load models motivate a discussion regarding the limits of validity of the HSLM.For this study,a large number of randomly generated load models of articulated,conventional,and regular trains are tested and compared with the envelope of HSLM effects.For each type of train,two sets of 100,000 load models are considered:one abiding by the limits of the EN 1991-2 and another considering wider limits.This comparison is achieved using both a bridge-independent metric(train signatures)and dynamic analyses on a case study bridge(the Canelas bridge of the Portuguese Railway Network).For the latter,a methodology to decrease the computational cost of moving loads analysis is introduced.Results show that some theoretical load models constructed within the stipulated limits of the norm can lead to effects not covered by the HSLM.This is especially noted in conventional trains,where there is a relation with larger distances between centres of adjacent vehicle bogies. 展开更多
关键词 High-speed load model Dynamic analysis High-speed railways Train signature railway bridges Deck acceleration
下载PDF
Influence of pier height on the safety of trains running on high-speed railway bridges during earthquakes
3
作者 NIE Yu-tao GUO Wei +8 位作者 JIANG Li-zhong YU Zhi-wu ZENG Chen WANG Yang HE Xu-en REN Shao-xun HUANG Ren-qiang LIANG Guang-yue LI Chang-qing 《Journal of Central South University》 SCIE EI CAS CSCD 2024年第6期2102-2115,共14页
Sudden earthquakes pose a threat to the running safety of trains on high-speed railway bridges,and the stiffness of piers is one of the factors affecting the dynamic response of train-track-bridge system.In this paper... Sudden earthquakes pose a threat to the running safety of trains on high-speed railway bridges,and the stiffness of piers is one of the factors affecting the dynamic response of train-track-bridge system.In this paper,a experiment of a train running on a high-speed railway bridge is performed based on a dynamic experiment system,and the corresponding numerical model is established.The reliability of the numerical model is verified by experiments.Then,the experiment and numerical data are analyzed to reveal the pier height effects on the running safety of trains on bridges.The results show that when the pier height changes,the frequency of the bridge below the 30 m pier height changes greater;the increase of pier height causes the transverse fundamental frequency of the bridge close to that of the train,and the shaking angle and lateral displacement of the train are the largest for bridge with 50 m pier,which increases the risk of derailment;with the pier height increases from 8 m to 50 m,the derailment coefficient obtained by numerical simulations increases by 75% on average,and the spectral intensity obtained by experiments increases by 120% on average,two indicators exhibit logarithmic variation. 展开更多
关键词 pier height high-speed railway bridge running safety numerical model
下载PDF
Field survey and analysis on near-fault severely damaged high-speed railway bridge in 2022 M6.9 Menyuan earthquake
4
作者 Lin Xuchuan Liu Fuxiang Shan Wenchen 《Earthquake Engineering and Engineering Vibration》 SCIE EI CSCD 2024年第4期1043-1055,共13页
The 2022 M6.9 Menyuan earthquake caused severe damage to a high-speed railway bridge,which was designed for high-speed trains running at speeds of above 250 km/h and is located right next to the fault.Bridges of this ... The 2022 M6.9 Menyuan earthquake caused severe damage to a high-speed railway bridge,which was designed for high-speed trains running at speeds of above 250 km/h and is located right next to the fault.Bridges of this type have been widely used for rapidly constructing the high-speed railway network,but few bridges have been tested by near-fault devastating earthquakes.The potential severe impact of the earthquake on the high-speed railway is not only the safety of the infrastructure,trains and passengers,but also economic loss due to interrupted railway use.Therefore,a field survey was carried out immediately after the earthquake to collect time-sensitive data.The damage to the bridge was carefully investigated,and quantitative analyses were conducted to better understand the mechanism of the bridge failure.It was found that seismic action perpendicular to the bridge’s longitudinal direction caused severe damage to the girders and rails,while none of the piers showed obvious deformation or cracking.The maximum values of transverse displacement,out-of-plane rotation and twisting angle of girders reached 212.6 cm,3.1 degrees and 19.9 degrees,respectively,causing severe damage to the bearing supports and anti-seismic retaining blocks.These observations provide a basis for improving the seismic design of high-speed railway bridges located in near-fault areas. 展开更多
关键词 Menyuan earthquake field survey high-speed railway bridge near fault seismic damage
下载PDF
Noise reduction mechanism of high-speed railway box-girder bridges installed with MTMDs on top plate
5
作者 Xiaoan Zhang Xiaoyun Zhang +2 位作者 Jianjin Yang Li Yang Guangtian Shi 《Railway Engineering Science》 EI 2024年第4期518-532,共15页
The issue of low-frequency structural noise radiated from high-speed railway(HSR) box-girder bridges(BGBs) is a significant challenge worldwide. Although it is known that vibrations in BGBs caused by moving trains can... The issue of low-frequency structural noise radiated from high-speed railway(HSR) box-girder bridges(BGBs) is a significant challenge worldwide. Although it is known that vibrations in BGBs caused by moving trains can be reduced by installing multiple tuned mass dampers(MTMDs) on the top plate, there is limited research on the noise reduction achieved by this method. This study aims to investigate the noise reduction mechanism of BGBs installed with MTMDs on the top plate. A sound radiation prediction model for the BGB installed with MTMDs is developed, based on the vehicle–track–bridge coupled dynamics and acoustics boundary element method. After being verified by field tested results, the prediction model is employed to study the reduction of vibration and noise of BGBs caused by the MTMDs. It is found that installing MTMDs on top plate can significantly affect the vibration distribution and sound radiation law of BGBs. However, its impact on the sound radiation caused by vibrations dominated by the global modes of BGBs is minimal. The noise reduction achieved by MTMDs is mainly through changing the acoustic radiation contributions of each plate of the bridge. In the lower frequency range, the noise reduction of BGB caused by MTMDs can be more effective if the installation of MTMDs can modify the vibration frequency and distribution of the BGB to avoid the influence of small vibrations and disperse the sound radiation from each plate. 展开更多
关键词 High-speed railway Box-girder bridge MTMDs Noise control design Noise reduction mechanism
下载PDF
Influence of span-to-depth ratio on dynamic response of vehicle-turnoutbridge system in high-speed railway
6
作者 Chuanqing Dai Tao Xin +3 位作者 Shenlu Qiao Yanan Zhang Pengsong Wang Mahantesh M.Nadakatti 《High-Speed Railway》 2024年第1期30-41,共12页
For high-speed railways,the smoothness of the railway line significantly affects the operational speed of trains.When the train passes through the turnout on a long-span bridge,the wheel-rail impacts caused by the tur... For high-speed railways,the smoothness of the railway line significantly affects the operational speed of trains.When the train passes through the turnout on a long-span bridge,the wheel-rail impacts caused by the turnout structure irregularities,and the instability arising from the bridge's flexural deformation lead to a strong coupling effect in the vehicle-turnout-bridge system.This significantly affects both ride comfort and operational safety.For addressing this issue,the present study considered a long-span continuous rigid-frame bridge as an example and established a train-turnout-bridge coupled dynamic model of high-speed railway.Utilizing a selfdeveloped dynamic simulation program,the study analysed the dynamic response characteristics when the train passes through the turnouts on the bridge.It also investigated the influence of different span-to-depth ratios of the bridge on the vehicle dynamic response when the train passes through the main line and branch line of turnouts and then proposed a span-to-depth ratio limit value for a long-span continuous rigid-frame bridge.The research findings suggest that the changes in the span-to-depth ratio have a relatively minor impact on the train’s operational performance but significantly affect the dynamic characteristics of the bridge structure.Based on the findings and a comprehensive assessment of safety indicators,it is advisable to establish a span-to-depth ratio limit of 1/4500 for a long-span continuous rigid-frame bridge. 展开更多
关键词 Turnout on bridge Span-to-depth ratio Dynamic response Vehicle-turnout-bridge system High-speed railway
下载PDF
Developments and Prospects of Long-Span High-Speed Railway Bridge Technologies in China 被引量:63
7
作者 Shunquan Qin Zongyu Gao 《Engineering》 SCIE EI 2017年第6期787-794,共8页
With the rapid developments of the high-speed railway in China, a great number of long-span bridges have been constructed in order to cross rivers and gorges. At present, the longest main span of a constructed high-sp... With the rapid developments of the high-speed railway in China, a great number of long-span bridges have been constructed in order to cross rivers and gorges. At present, the longest main span of a constructed high-speed railway bridge is only 630 m. The main span of Hutong Yangtze River Bridge and of Wufengshan Yangtze River Bridge, which are under construction, will be much longer, at 1092 m each. In order to overcome the technical issues that originate from the extremely large dead loading and the relatively small structural stiffness of long-span high-speed railway bridges, many new technologies in bridge construction, design, materials, and so forth have been developed. This paper carefully reviews progress in the construction technologies of multi-function combined bridges in China, including com- bined highway and railway bridges and multi-track railway bridges. Innovations and practices regarding new types of bridge and composite bridge structures, such as bridges with three cable planes and three main trusses, inclined main trusses, slab-truss composite sections, and steel-concrete composite sections, are introduced. In addition, investigations into high-performance materials and integral fabrication and erection techniques for long-span railway bridges are summarized. At the end of the paper, prospects for the future development of long-span high-speed railwav bridges are provided. 展开更多
关键词 High-speed railway Long-span bridges Multi-function combined bridges High-performance materials Spatial structures with three cable planes Integral fabrication
下载PDF
Longitudinal forces of continuously welded track on high-speed railway cable-stayed bridge considering impact of adjacent bridges 被引量:32
8
作者 戴公连 闫斌 《Journal of Central South University》 SCIE EI CAS 2012年第8期2348-2353,共6页
A proven beam-track contact model was used to analyze the track-structure interaction of CWR (continuously welded track) on bridge. Considering the impact of adjacent bridges, the tower-cable-track-beam-pier-pile fini... A proven beam-track contact model was used to analyze the track-structure interaction of CWR (continuously welded track) on bridge. Considering the impact of adjacent bridges, the tower-cable-track-beam-pier-pile finite element model of the cable-stayed bridge was established. Taking a bridge group including 40-32m simply-supported beam and (32+80+112)m single-tower cable-stayed bridge and 17-32m simply-supported beam on the Kunming-Shanghai high-speed railway as an example, the characteristics of CWR longitudinal force on the cable-stayed bridge were studied. It is shown that adjacent bridges must be considered in the calculation of the track expansion force and bending force on cable-stayed bridge. When the span amount of adjacent bridges is too numerous, it can be simplified as six spans; the fixed bearing of adjacent simply-supported beams should be placed on the side near the cable-stayed bridge; the track expansion device should be set at the bridge tower to reduce the track force near the bridge abutment. 展开更多
关键词 high-speed railway continuously welded track cable-stayed bridge simply-supported beam
下载PDF
Dynamic response limit of high-speed railway bridge under earthquake considering running safety performance of train 被引量:14
9
作者 LIU Xiang JIANG Li-zhong +3 位作者 XIANG Ping LAI Zhi-peng FENG Yu-lin CAO Shan-shan 《Journal of Central South University》 SCIE EI CAS CSCD 2021年第3期968-980,共13页
Due to the wide railway network and different characteristics of many earthquake zones in China,considering the running safety performance of trains(RSPT)in the design of high-speed railway bridge structures is very n... Due to the wide railway network and different characteristics of many earthquake zones in China,considering the running safety performance of trains(RSPT)in the design of high-speed railway bridge structures is very necessary.In this study,in order to provide the seismic design and evaluation measure of the bridge structure based on the RSPT,a calculation model of RSPT on bridge under earthquake was established,and the track surface response measure when the derailment coefficient reaches the limit value was calculated by referring to 15 commonly used ground motion(GM)intensity measures.Based on the coefficient of variation of the limit value obtained from multiple GM samples,the optimal measures were selected.Finally,the limit value of bridge seismic response based on RSPT with different train speeds and structural periods was determined. 展开更多
关键词 high-speed railway bridge seismic design running safety performance measure limit
下载PDF
A computational method for post-construction settlement of high-speed railway bridge pile foundation considering soil creep effect 被引量:12
10
作者 冯胜洋 魏丽敏 +1 位作者 何重阳 何群 《Journal of Central South University》 SCIE EI CAS 2014年第7期2921-2927,共7页
Based on reasonable assumptions that simplified the calculational model,a simple and practical method was proposed to calculate the post-construction settlement of high-speed railway bridge pile foundation by using th... Based on reasonable assumptions that simplified the calculational model,a simple and practical method was proposed to calculate the post-construction settlement of high-speed railway bridge pile foundation by using the Mesri creep model to describe the soil characteristics and the Mindlin-Geddes method considering pile diameter to calculate the vertical additional stress of pile bottom.A program named CPPS was designed for this method to calculate the post-construction settlement of a high-speed railway bridge pile foundation.The result indicates that the post-construction settlement in 100 years meets the requirements of the engineering specifications,and in the first two decades,the post-construction settlement is about 80% of its total settlement,while the settlement in the rest eighty years tends to be stable.Compared with the measured settlement after laying railway tracks,the calculational result is closed to that of the measured,and the results are conservative with a high computational accuracy.It is noted that the method can be used to calculate the post-construction settlement for the preliminary design of high-speed railway bridge pile foundation. 展开更多
关键词 high-speed railway bridge pile foundation post-construction settlement Mesri creep model simplified computational method
下载PDF
Near-fault directivity pulse-like ground motion effect on high-speed railway bridge 被引量:8
11
作者 陈令坤 张楠 +3 位作者 蒋丽忠 曾志平 陈格威 国巍 《Journal of Central South University》 SCIE EI CAS 2014年第6期2425-2436,共12页
The vehicle-track-bridge(VTB)element was used to investigate how a high-speed railway bridge reacted when it was subjected to near-fault directivity pulse-like ground motions.Based on the PEER NAG Strong Ground Motion... The vehicle-track-bridge(VTB)element was used to investigate how a high-speed railway bridge reacted when it was subjected to near-fault directivity pulse-like ground motions.Based on the PEER NAG Strong Ground Motion Database,the spatial analysis model of a vehicle-bridge system was developed,the VTB element was derived to simulate the interaction of train and bridge,and the elasto-plastic seismic responses of the bridge were calculated.The calculation results show that girder and pier top displacement,and bending moment of the pier base increase subjected to near-fault directivity pulse-like ground motion compared to far-field earthquakes,and the greater deformation responses in near-fault shaking are associated with fewer reversed cycles of loading.The hysteretic characteristics of the pier subjected to a near-fault directivity pulse-like earthquake should be explicitly expressed as the bending moment-rotation relationship of the pier base,which is characterized by the centrally strengthened hysteretic cycles at some point of the loading time-history curve.The results show that there is an amplification of the vertical deflection in the girder's mid-span owing to the high vertical ground motion.In light of these findings,the effect of the vertical ground motion should be used to adjust the unconservative amplification constant 2/3 of the vertical-to-horizontal peak ground motion ratio in the seismic design of bridge. 展开更多
关键词 ELEMENT near-fault ground motion directivity pulse high-speed railway bridge earthquake response
下载PDF
Sensitive factors research for track-bridge interaction of Long-span X-style steel-box arch bridge on high-speed railway 被引量:9
12
作者 刘文硕 戴公连 何旭辉 《Journal of Central South University》 SCIE EI CAS 2013年第11期3314-3323,共10页
X-style arch bridge on high-speed railways(HSR)is one kind of complicated long-span structure,and the track-bridge interaction is essential to ensure the safety and smoothness of HSR.Taking an X-style steel-box arch b... X-style arch bridge on high-speed railways(HSR)is one kind of complicated long-span structure,and the track-bridge interaction is essential to ensure the safety and smoothness of HSR.Taking an X-style steel-box arch bridge with a main span of450 m on HSR under construction for example,a new integrative mechanic model of rail-stringer-cross beam-suspenderpier-foundation coupling system was established,adopting the nonlinear spring element simulating the longitudinal resistance between track and bridge.The transmission law of continuous welded rail(CWR)on the X-style arch bridge was researched,and comparative study was carried out to discuss the influence of several sensitive factors,such as the temperature load case,the longitudinal resistance model,the scheme of longitudinal restraint conditions,the introverted inclination of arch rib,the stiffness of pier and abutment and the location of the rail expansion device.Calculating results indicate that the longitudinal resistance has a significant impact upon the longitudinal forces of CWR on this kind of bridge,while the arch rib’s inclination has little effect.Besides,temperature variation of arch ribs and suspenders should be taken into account in the calculation.Selecting the restraint system without longitudinally-fixed bearing and setting the rail expansion devices on both ends are more reasonable. 展开更多
关键词 high-speed railway track-bridge interaction X-style steel-box arch bridge continuous welded rail
下载PDF
Parametric analysis on buffeting performance of a long-span high-speed railway suspension bridge 被引量:5
13
作者 ZHAO Kai-yong WANG Hao +2 位作者 TAO Tian-you GAO Hui WU Tong 《Journal of Central South University》 SCIE EI CAS CSCD 2022年第8期2574-2588,共15页
The buffeting performance of kilometer-level high-speed railway suspension bridges has a great impact on the smooth operation of high-speed trains.To investigate the buffeting performance of the structure significantl... The buffeting performance of kilometer-level high-speed railway suspension bridges has a great impact on the smooth operation of high-speed trains.To investigate the buffeting performance of the structure significantly different from traditional suspension bridges,the first long-span high-speed railway suspension bridge,Wufengshan Yangtze River Bridge(WYRB),is taken as a numerical example to demonstrate the effects of structural parameters and wind field parameters on the buffeting responses.Based on the design information,the spatial finite element model(FEM)of WYRB is established before testing its accuracy.The fluctuating wind fields are simulated via both classical and stochastic wave based spectral representation method(SRM).Finite element method is further taken to analyze the parametric sensitivity on wind induced buffeting responses in time domain.The results show that the vertical displacement is more sensitive to the changing dead load than the lateral and torsional ones.The larger stiffness of the main girder and the lower sag-to-span ratio are both helpful to reduce the buffeting responses.Wind spectrum and coherence function are key influencing factors to the responses so setting proper wind field parameters are essential in the wind-resistant design stage.The analytical results can provide references for wind resistance analysis and selection of structural and fluctuating wind field parameters for similar long-span high-speed railway suspension bridges. 展开更多
关键词 high-speed railway suspension bridge buffeting performance numerical analysis parametric analysis wind field simulation
下载PDF
Structure and behavior of floor system of two super high-speed railway Changjiang composite bridges 被引量:3
14
作者 张晔芝 张敏 《Journal of Central South University》 SCIE EI CAS 2011年第2期542-549,共8页
Wuhan Tianxingzhou Changjiang (WTC) Bridge and Nanjing Dashengguan Changjiang (NDC) Bridge are two super high-speed railway 3-trusses composite bridges. This is the first time of using three trusses in such large brid... Wuhan Tianxingzhou Changjiang (WTC) Bridge and Nanjing Dashengguan Changjiang (NDC) Bridge are two super high-speed railway 3-trusses composite bridges. This is the first time of using three trusses in such large bridges in the world. These two types of railway floor systems of the two bridges have never been used in China before. The problem how to conform the deformations and stress levels of the railway floor system of WTC Bridge was studied. After finite element analysis and comparison,the plan of arranging one expansion stringer every two panels in railway floor system were proposed and good effect was obtained. Because of the application of three trusses,the allocation of the loads acted on the deck in three trusses is different and varies in different places of NDC Bridge. This problem was studied by model experiment and 3D finite element analysis. The results of 3D FEM analysis coincide with the model test results. The allocation rule of the loads acting on the deck in three trusses was presented. Because of the application of monolithic decks,the stiffness and structural integrity of NDC Bridge are high. 展开更多
关键词 high-speed railway composite mechanics characteristics floor system Wuhan Tianxingzhou Changjiang bridge Nanjing Dashengguan Changjiang bridge
下载PDF
Seismic analysis of high-speed railway irregular bridge–track system considering V-shaped canyon effect 被引量:4
15
作者 Zhihui Zhu Yongjiu Tang +2 位作者 Zhenning Ba Kun Wang Wei Gong 《Railway Engineering Science》 2022年第1期57-70,共14页
To explore the effect of canyon topography on the seismic response of railway irregular bridge-track system that crosses a V-shaped canyon, seismic ground motions of the horizontal site and V-shaped canyon site were s... To explore the effect of canyon topography on the seismic response of railway irregular bridge-track system that crosses a V-shaped canyon, seismic ground motions of the horizontal site and V-shaped canyon site were simulated through theoretical analysis with 12 earthquake records selected from the Pacific Earthquake Engineering Research Center(PEER) Strong Ground Motion Database matching the site condition of the bridge.Nonlinear seismic response analyses of an existing 11-span irregular simply supported railway bridge-track system were performed under the simulated spatially varying ground motions. The effects of the V-shaped canyon topography on the peak ground acceleration at bridge foundations and seismic responses of the bridge-track system were analyzed. Comparisons between the results of horizontal and V-shaped canyon sites show that the top relative displacement between adjacent piers at the junction of the incident side and the back side of the V-shaped site is almost two times that of the horizontal site, which also determines the seismic response of the fastener. The maximum displacement of the fastener occurs in the V-shaped canyon site and is 1.4 times larger than that in the horizontal site. Neglecting the effect of V-shaped canyon leads to the inappropriate assessment of the maximum seismic response of the irregular high-speed railway bridge-track system. Moreover, engineers should focus on the girder end to the left or right of the two fasteners within the distance of track seismic damage. 展开更多
关键词 V-shaped canyon Nonlinear seismic response Irregular bridge Simply supported railway bridge Analytical solution Topography effect
下载PDF
Numerical calculation on solar temperature field of a cable-stayed bridge with U-shaped section on high-speed railway 被引量:3
16
作者 刘文硕 戴公连 饶少臣 《Journal of Central South University》 SCIE EI CAS 2014年第8期3345-3352,共8页
Based on transient temperature field theory of heat conduction, the solar temperature field calculation model of U-shape sectioned high-speed railway cable-stayed bridge under actions of concrete beams and ballast was... Based on transient temperature field theory of heat conduction, the solar temperature field calculation model of U-shape sectioned high-speed railway cable-stayed bridge under actions of concrete beams and ballast was established. Using parametric programming language, finite element calculation modules considering climate conditions, bridge site, structure dimension and material thermophysical properties were compiled. Six standard day cycles with the strongest yearly radiation among the bridge sites were selected for sectional solar temperature field calculation and temperature distributions under different temperature-sensitive parameters were compared. The results show that under the influence of sunshine, U-shape section of the beam shows obvious nonlinear distribution characteristics and the maximum cross-section temperature difference is more than 21℃; the ballast significantly reduces sunshine temperature difference of the beam and temperature peak of the bottom margin lags with the increase of ballast thickness; the maximum cross-section vertical temperature gradient appears in summer while large transverse temperature difference appears in winter. 展开更多
关键词 high-speed railway cable-stayed bridge U-shaped section solar temperature field thermal analysis
下载PDF
Design of unballasted track bridges on Beijing——Tianjin intercity railway 被引量:3
17
作者 Sun Shuli Zhang Wenjian Wang Zhaohu Su Wei Wu Cailan Bu Qinghao 《Engineering Sciences》 EI 2011年第4期59-70,共12页
Beijing-Tianjin intercity railway is the first newly-built passenger dedicated line with operating speed of 350 km/h in our country. During design,new ideas of bridge construction were carried out to ensure the requir... Beijing-Tianjin intercity railway is the first newly-built passenger dedicated line with operating speed of 350 km/h in our country. During design,new ideas of bridge construction were carried out to ensure the requirements of safety,comfort and stability of the train under high-speed condition. At the same time,concepts of environmental adaptability,service to transportation and comprehensive benefits were observed. On the whole line,long-bridge schemes were adopted and the most advanced technologies of unballasted track were utilized on bridges,the length of which accounts for 87.7 % of the total line. The success of design and construction of the bridges on this rail has accumulated valuable experience for high-speed railway construction on a large scale in the future,and made it a marking,demonstrating,and model project to follow. 展开更多
关键词 Beijing--Tianjin intercity railway unballasted track bridge design concept
下载PDF
Near-source topographic effect on seismic responses of a multi-span continuous railway bridge crossing a symmetrical V-shaped canyon 被引量:1
18
作者 LI Shuai WANG Ming-dong +5 位作者 ZHANG Fan ZHANG Yu DAI Deng-hui ZHANG Ning WANG Jing-quan GAO Yu-feng 《Journal of Central South University》 SCIE EI CAS CSCD 2022年第8期2434-2448,共15页
Past earthquakes have revealed that topographic features have significant impacts on the characteristics of ground motions,which may cause the amplification and de-amplification of input seismic waves.The topographic ... Past earthquakes have revealed that topographic features have significant impacts on the characteristics of ground motions,which may cause the amplification and de-amplification of input seismic waves.The topographic effect with the assumption of plane seismic waves on the seismic responses of bridges has been investigated in the existing literature;however,the influence of near-source topographic effects has not been thoroughly understood.The objective of this study is to numerically explore the near-source topographic effects on the seismic behaviors of an existing railway bridge crossing a symmetrical V-shaped canyon.The influence of the source of incident waves is estimated.Numerical results demonstrate that the topographic effects can noticeably amplify the seismic responses of the bridge.Compared to the bridge without crossing a canyon,the peak displacements of the girder,pier,and bearing in the case of the canyon crossing bridge increase by 15.2%,2.9%−14.5%,and 24.2%−229.6%,respectively.The piers at the illuminated side of the canyon experience larger seismic responses compared to the piers at the shaded side of the canyon due to the unequal motion amplitudes at each support.As the source-to-canyon distance increases,the seismic responses of the piers show an increasing trend. 展开更多
关键词 railway bridges V-shaped canyon topographic amplification seismic response parametric analysis
下载PDF
A linear crack length measurement method for railway bridges based on calibration points fitting 被引量:1
19
作者 WANG Ji-wu YU Peng-fei +1 位作者 LUO Hai-bao YU Pei-long 《Journal of Measurement Science and Instrumentation》 CAS CSCD 2020年第2期118-125,共8页
For the linear crack skeleton of railway bridges with irregular strike,it is difficult to accurately express the crack contour feature by using a single smoothing fitting algorithm.In order to improve the measurement ... For the linear crack skeleton of railway bridges with irregular strike,it is difficult to accurately express the crack contour feature by using a single smoothing fitting algorithm.In order to improve the measurement accuracy,a polynomial curve fitting was proposed,which used the calibration point of crack contour as the boundary point,and then put them all together to produce a continuous contour curve to achieve the crack length measurement.The method was tested by measuring the linar cracks with different shapes.It is shown that this proposed algorithm can not only solve the jagged problem generated in the crack skeleton extraction process,but also improve the crack length measurement accuracy.The relative deviation is less than 0.15,and the measurement accuracy is over 98.05%,which provides a more effective means for the crack length measurement in railway bridges. 展开更多
关键词 crack skeleton length measurement calibration point polynomial fitting railway bridge
下载PDF
Safety and Applicability Evaluation of Railway Bridges in China 被引量:1
20
作者 Yuling Zhang Li Wang +1 位作者 Xianting Du Zhu Yu 《Journal of Civil Engineering and Architecture》 2010年第1期53-59,共7页
There are more than eight different design standards in use for the existing railway bridges in China, which have different applicabilities for bridges built in different periods. In this paper, the design load standa... There are more than eight different design standards in use for the existing railway bridges in China, which have different applicabilities for bridges built in different periods. In this paper, the design load standards in different periods are introduced and compared; The working status of the railway is investigated. According to the developing trend of separating passenger and freight transports, by comparing the computed results of the bridge effect and the fatigue cumulative damage, the applicabilities of bearing capacity and fatigue are analyzed for existing bridges. The results indicate that the bearing capacities of 99% existing bridges are suitable for the demand of 26.5 t (axle-weight) freight trains. However, for culverts, bridges with spans less than 20 m, longitudinal and transverse beams of through bridges, suspenders of truss bridges and other locally-stressed members should be evaluated and reinforced due to the increasing axle-weight. 展开更多
关键词 railway bridge SAFETY FATIGUE passenger-freight separation.
下载PDF
上一页 1 2 3 下一页 到第
使用帮助 返回顶部