In light of the escalating global energy imperatives,mining of challenging-to-access resources,such as steeply inclined extra-thick coal seams(SIEC),has emerged as one of the future trends within the domain of energy ...In light of the escalating global energy imperatives,mining of challenging-to-access resources,such as steeply inclined extra-thick coal seams(SIEC),has emerged as one of the future trends within the domain of energy advancement.However,there is a risk of gas and coal spontaneous combustion coupling disasters(GCC)within the goaf of SIEC due to the complex goaf structure engendered by the unique mining methodologies of SIEC.To ensure that SIEC is mined safely and efficiently,this study conducts research on the GCC within the goaf of SIEC using field observation,theoretical analysis,and numerical modeling.The results demonstrate that the dip angle,the structural dimensions in terms of width-to-length ratio,and compressive strength of the overlying rock are the key factors contributing to the goaf instability of SIEC.The gangue was asymmetrically filled,primarily accumulating within the central and lower portions of the goaf,and the filling height increased proportionally with the advancing caving height,the expansion coefficient,and the thickness of the surrounding rock formation.The GCC occurs in the goaf of SIEC,with an air-return side range of 41 m and an air-intake side range of 14 m,at the intersection area of the“<”-shaped oxygen concentration distribution(coal spontaneous combustion)and the“>”-shaped gas concentration distribution(gas explosion).The optimal nitrogen flow rate is 1000 m3/h with an injection port situated 25 m away from the working face for the highest nitrogen diffusion efficacy and lowest risk of gas explosion,coal spontaneous combustion,and GCC.It has significant engineering applications for ensuring the safe mining of SIEC threatened by the GCC.展开更多
This work aimed at revealing the mechanism of strong ground pressure behaviour(SGPB)induced by high-position hard roof(HHR).Based on the supporting structures model of HHR,a modified voussoir beam mechanical model for...This work aimed at revealing the mechanism of strong ground pressure behaviour(SGPB)induced by high-position hard roof(HHR).Based on the supporting structures model of HHR,a modified voussoir beam mechanical model for HHR was established by considering the gangue support coefficient,through which the modified expressions of limit breaking span and breaking energy of HHR were deduced.Combined with the relationship between the dynamic-static loading stress of supporting body(hydraulic support and coal wall)and its comprehensive supporting strength,the criteria of ground pressure behaviour(GPB)induced by HHR were discussed.The types of Ⅰ_(1),Ⅰ_(2),Ⅱ_(1),andⅡ_(2) of GPB were interpreted.Results showed that types Ⅰ_(1) and Ⅰ_(2) were the main forms of SGPB in extra-thick coal seam mining.The main manifestation of SGPB was static stress,which was mainly derived from the instability of HHR rather than fracture.Accordingly,an innovative control technology was proposed,which can weaken static load by vertical-well separated fracturing HHR.The research results have been successfully applied to the 8101 working face in Tashan coal mine,Shanxi Province,China.The results of a digital borehole camera observation and stress monitoring proved the rationality of the GPB criteria.The control technology was successful,paving the way for new possibilities to HHR control for safety mining.展开更多
One of the most dangerous safety hazard in underground coal mines is roof falls during retreat mining.Roof falls may cause life-threatening and non-fatal injuries to miners and impede mining and transportation operati...One of the most dangerous safety hazard in underground coal mines is roof falls during retreat mining.Roof falls may cause life-threatening and non-fatal injuries to miners and impede mining and transportation operations.As a result,a reliable roof fall prediction model is essential to tackle such challenges.Different parameters that substantially impact roof falls are ill-defined and intangible,making this an uncertain and challenging research issue.The National Institute for Occupational Safety and Health assembled a national database of roof performance from 37 coal mines to explore the factors contributing to roof falls.Data acquired for 37 mines is limited due to several restrictions,which increased the likelihood of incompleteness.Fuzzy logic is a technique for coping with ambiguity,incompleteness,and uncertainty.Therefore,In this paper,the fuzzy inference method is presented,which employs a genetic algorithm to create fuzzy rules based on 109 records of roof fall data and pattern search to refine the membership functions of parameters.The performance of the deployed model is evaluated using statistical measures such as the Root-Mean-Square Error,Mean-Absolute-Error,and coefficient of determination(R_(2)).Based on these criteria,the suggested model outperforms the existing models to precisely predict roof fall rates using fewer fuzzy rules.展开更多
Indirect fracturing in the roof of broken soft coal seams has been demonstrated to be a feasible technology.In this work,the No.5 coal seam in the Hancheng block was taken as the research object.Based on the findings ...Indirect fracturing in the roof of broken soft coal seams has been demonstrated to be a feasible technology.In this work,the No.5 coal seam in the Hancheng block was taken as the research object.Based on the findings of true triaxial hydraulic fracturing experiments and field pilot under this technology and the cohesive element method,a 3D numerical model of indirect fracturing in the roof of broken soft coal seams was established,the fracture morphology propagation and evolution law under different conditions was investigated,and analysis of main controlling factors of fracture parameters was conducted with the combination weight method,which was based on grey incidence,analytic hierarchy process and entropy weight method.The results show that“士”-shaped fractures,T-shaped fractures,cross fractures,H-shaped fractures,and“干”-shaped fractures dominated by horizontal fractures were formed.Different parameter combinations can form different fracture morphologies.When the coal seam permeability is lower and the minimum horizontal principal stress difference between layers and fracturing fluid injection rate are both larger,it tends to form“士”-shaped fractures.When the coal seam permeability and minimum horizontal principal stress between layers and perforation position are moderate,cross fractures are easily generated.Different fracture parameters have different main controlling factors.Engineering factors of perforation location,fracturing fluid injection rate and viscosity are the dominant factors of hydraulic fracture shape parameters.This study can provide a reference for the design of indirect fracturing in the roof of broken soft coal seams.展开更多
In order to clarify the danger of water breakout in the bottom plate of extra-thick coal seam mining, 2202 working face of a mine in the west is taken as the research object, and it is proposed to use the on-site moni...In order to clarify the danger of water breakout in the bottom plate of extra-thick coal seam mining, 2202 working face of a mine in the west is taken as the research object, and it is proposed to use the on-site monitoring means combining borehole peeping and microseismic monitoring, combined with the theoretical analysis to analyze the danger of water breakout in the bottom plate. The results show that: 1) the theoretically calculated maximum damage depth of the bottom plate is 27.5 m, and its layer is located above the Austrian ash aquifer, which has the danger of water breakout;2) the drill hole peeping at the bottom plate of the working face shows that the depth of the bottom plate fissure development reaches 26 m, and the integrity of the water barrier layer has been damaged, so there is the risk of water breakout;3) for the microseismic monitoring of the anomalous area, the bottom plate of the return air downstream channel occurs in the field with a one-week lag, which shows that microseismic monitoring events may reflect the water breakout of the underground. This shows that the microseismic monitoring events can reflect the changes of the underground flow field, which can provide a reference basis for the early warning of water breakout. The research results can provide reference for the prediction of sudden water hazard.展开更多
Failure of the surrounding rock around a roadway induced by roof separation is one major type of underground roof-fall accidents.This failure can especially be commonly-seen in a bottom-driven roadway within an extra-...Failure of the surrounding rock around a roadway induced by roof separation is one major type of underground roof-fall accidents.This failure can especially be commonly-seen in a bottom-driven roadway within an extra-thick coal seam("bottom-driven roadway"is used throughout for ease of reference),containing weak partings in their roof coal seams.To determine the upper limit position of the roof interlayer separation is the primary premise for roof control.In this study,a mechanical model for predicting the interlayer separation overlying a bottom-driven roadway within an extra-thick coal seam was established and used to deduce the vertical stress,and length,of the elastic,and plastic zones in the rock strata above the wall of the roadway as well as the formulae for calculating the deflection in different regions of rock strata under bearing stress.Also,an approach was proposed,calculating the stratum load,deflection,and limiting span of the upper limit position of the interlayer separation in a thick coal seam.Based on the key strata control theory and its influence of bedding separation,a set of methods judging the upper limit position of the roof interlayer separation were constructed.In addition,the theoretical prediction and field monitoring for the upper limit position of interlayer separation were conducted in a typical roadway.The results obtained by these two methods are consistent,indicating that the methods proposed are conducive to improving roof control in a thick coal seam.展开更多
Considering the danger of water inrush in mining very thick coal seam under water-rich roof in Majialiang Coal Mine,the universal discrete element(UDEC)software was used to simulate the overburden fracture evolution l...Considering the danger of water inrush in mining very thick coal seam under water-rich roof in Majialiang Coal Mine,the universal discrete element(UDEC)software was used to simulate the overburden fracture evolution laws when mining 4#coal seam.Besides,this study researched on the influence of face advancing length,speed and mining height on the height of the water flowing fractured zones(HWFFZ),and analyzed the correlation of face advancing length and change rules of aquifer water levels and goaf water inflow.Based on those mentioned above,this research proposed the following water-controlling technologies:draining the roof water before mining,draining goaf water,reasonable advancing speed and mining thickness.These water-controlling technologies were successfully used in the feld,thus ensured safely mining the very thick coal seam under water-rich roof.展开更多
Although conventional coal mine designs are conservative regarding pillar strength,local failures such as roof-falls and pillar bursts still affect mine safety and operations.Previous studies have identified that disc...Although conventional coal mine designs are conservative regarding pillar strength,local failures such as roof-falls and pillar bursts still affect mine safety and operations.Previous studies have identified that discontinuous,layered roof materials have some self-supporting capacity.This research is a preliminary step towards understanding these mechanics in coal-measure rocks.Although others have considered broad conceptual models and simplified analogs for mine roof behavior,this study presents a unique numerical model that more completely represents in-situ roof conditions.The discrete element method(DEM)is utilized to conduct a parametric analysis considering a range of in-situ stress ratios,material properties,and joint networks to determine the parameters controlling the stability of single-entries modeled in two-dimensions.Model results are compared to empirical observations of roof-support effectiveness(ARBS)in the context of the coal mine roof rating(CMRR)system.Results such as immediate roof displacement,overall stability,and statistical relationships between model parameters and outcomes are presented herein.Potential practical applications of this line of research include:(1)roof-support optimization for a range of coal-measure rocks,(2)establishment of a relationship between roof stability and pillar stress,and(3)determination of which parameters are most critical to roof stability and therefore require concentrated evaluation.展开更多
The coal mine roof rating(CMRR) was developed to bridge the gap between geological variation in underground coal mines and engineering design. The CMRR accounts for the compressive strength of the immediate roof, the ...The coal mine roof rating(CMRR) was developed to bridge the gap between geological variation in underground coal mines and engineering design. The CMRR accounts for the compressive strength of the immediate roof, the shear strength and intensity of any discontinuities present, and the moisture sensitivity of the immediate roof. The CMRR has been widely used and validated in Eastern US coal mines, but it has seen limited application in the Western US. This study focuses on roof behavior at a Western coal mine(Mine A). Mine A shows significant lateral geological variation, along with localized faulting and a laterally extensive sandstone channel network. The CMRR is not used to predict roof instability at the mine. It is, therefore, hypothesized that there are other factors that are correlated with roof instability in underground coal mines that could potentially also be considered in conjunction with the CMRR.This hypothesis was tested by collecting 30 CMRR measurements at Mine A. At each measurement location, a binary record of the roof condition(stable or unstable) was made, and other parameters such as depth of cover, presence of faulting, and sandstone channels were also recorded. ANOVA tests showed that the CMRR values and the roof conditions were not strongly correlated, indicating that the CMRR input criteria are not fully predictive of roof stability at this mine. The CMRR values showed statistically significant correlations(p less than 0.05) with faulting as well as with location at an intersection. For areas that had previously experienced roof fall but were currently stable, faulting was correlated with roof condition(p less than 0.05) only when the condition was classified as unstable.展开更多
Testing was completed on an earlier roof bolter CAC that used slots to provide a perimeter airflow. NIOSH tested it due to its unique design that differed from canopies that provided uniform airflow. Based upon NIOSH ...Testing was completed on an earlier roof bolter CAC that used slots to provide a perimeter airflow. NIOSH tested it due to its unique design that differed from canopies that provided uniform airflow. Based upon NIOSH recommendations from the earlier testing, a 3rd generation roof bolter CAC has been developed by J.H. Fletcher & Co. The changes to this CAC involve design modifications to the plenum outlets, using a single row of outlets on the perimeter and a different material for the plenum. This laboratory testing was a continuation of the original perimeter slotted CAC design. Using gravimetric and instantaneous sampling of respirable dust concentrations underneath and outside of the CAC. the laboratory testing was completed using three different blower fans that delivered differing airflows. The maximum plenum airflow velocities ranged from 2.34 to 3.64 m/s (460-716 fpm). Results showed plenum respirable dust concentrations ranging from 34.6% to 49.3% lower than respirable dust concentrations outside the plenum protection zone, thus showing an improvement in protection for the roof bolter operators.展开更多
Accidents such as support failure and excessive deformation of roadways due to drastic changes in strata behaviors are frequently reported when mining the extra-thick coal seams Nos.3e5 in Datong coal mine with top-co...Accidents such as support failure and excessive deformation of roadways due to drastic changes in strata behaviors are frequently reported when mining the extra-thick coal seams Nos.3e5 in Datong coal mine with top-coal caving method,which significantly hampers the mine's normal production.To understand the mechanism of strata failure,this paper presented a structure evolution model with respect to strata behaviors.Then the behaviors of strata overlying the extra-thick coal seams were studied with the combined method of theoretical analysis,physical simulation,and field measurement.The results show that the key strata,which are usually thick-hard strata,play an important role in overlying movement and may influence the mining-induced strata behaviors in the working face using top-coal caving method.The structural model of far-field key strata presents a 'masonry beam' type structure when'horizontal O-X' breakage type happens.The rotational motion of the block imposed radial compressive stress on the surrounding rock mass of the roadway.This can induce excessive deformation of roadway near the goaf.Besides,this paper proposed a pre-control technology for the hard roof based on fracture holes and underground roof pre-splitting.It could effectively reduce stress concentration and release the accumulated energy of the strata,when mining underground coal resources with top-coal caving method.展开更多
The coal mine roof rating(CMRR) is a measure of roof quality or structure competency for bedded roof types typically of underground coal mines. The CMRR has been used widely in the US, South Africa,Canada and Australi...The coal mine roof rating(CMRR) is a measure of roof quality or structure competency for bedded roof types typically of underground coal mines. The CMRR has been used widely in the US, South Africa,Canada and Australia. In order to investigate the application of the CMRR system in Chinese coal mines,two coal mines in China located in Panjiang Coal Field in Guizhou Province were investigated. Field data were collected which is required to calculate the CMRR value based on underground exposure. The CMRR values of 11 locations in two coal mines were calculated. The investigations demonstrated that the chance of mine roof failure is very low if the CMRR value is more than 50, given adequate support is installed in mine. It was found that the CMRR guideline are useful to preliminarily investigate stability in Panjiang Coal Field mines.展开更多
The rock mass rating(RMR)has been used across the geotechnical industry for half a century.In contrast,the coal mine roof rating(CMRR)was specifically introduced to underground coal mines two decades ago to link geolo...The rock mass rating(RMR)has been used across the geotechnical industry for half a century.In contrast,the coal mine roof rating(CMRR)was specifically introduced to underground coal mines two decades ago to link geological characterization with geotechnical risk mitigation.The premise of CMRR is that strength properties of mine roof rock are influenced by defects typical of coal measures stratigraphy.The CMRR has been used in longwall pillar design,roof support methods,and evaluation of extended cuts,but is rarely evaluated.Here,the RMR and CMRR are applied to a longwall coal mine.Roof rock mass classifications were undertaken at 67 locations across the mine.Both classifications showed marked spatial variability in terms of roof conditions.Normal and reverse faulting occur across the mine,and while no clear relationships exist between rock mass character and faulting,a central graben zone showed heterogeneous rock mass properties,and divergence between CMRR and RMR.Overall,the CMRR data fell within the broad envelope of results reported for extended cuts at Australian and U.S.coal mines.The corollary is that the CMRR is useful,and should not be used in isolation,but rather as a component of a strata control programme.展开更多
A 3rd generation roof bolter canopy air curtain(CAC)has been developed and constructed by J.H.Fletcher&Co.,Inc.As with the previous generation of the CAC,this design uses the principle of providing uniform airflow...A 3rd generation roof bolter canopy air curtain(CAC)has been developed and constructed by J.H.Fletcher&Co.,Inc.As with the previous generation of the CAC,this design uses the principle of providing uniform airflow across the canopy area as recommended by the National Institute for Occupational Safety and Health.The new modifications include a plenum that is constructed of a single flat aluminum plate,smaller-diameter airflow openings,and a single row of perimeter nozzles designed to prevent mine air contaminated by respirable dust from entering the CAC protection zone.Field testing was conducted on this new 3rd generation design showing reductions in coal mine respirable dust exposure for roof bolter operators.Dust control efficiencies for the CAC for the left bolter operator(intake side)ranged from approximately 26%–60%,while the efficiencies for the CAC for the right bolter operator(return side)ranged from 3%to 47%.展开更多
A 2nd generation roof bolter canopy air curtain(CAC)design was tested by National Institute for Occupational Safety and Health(NIOSH)at a Midwestern underground coal mine.During the study,the roof bolter never operate...A 2nd generation roof bolter canopy air curtain(CAC)design was tested by National Institute for Occupational Safety and Health(NIOSH)at a Midwestern underground coal mine.During the study,the roof bolter never operated downwind of the continuous miner.Using a combination of personal Data Rams(pDR)and gravimetric samplers,the dust control efficiency of the roof bolter CAC was ascertained.Performance evaluation was determined using three methods:(1)comparing roof bolter operator concentrations underneath the CAC to roof bolter concentrations outside the CAC,(2)comparing roof bolter operator concentrations underneath the CAC to the concentrations at the rear of the bolter,and finally,(3)using the gravimetric data directly underneath the CAC to correct roof bolter operator concentrations underneath the CAC and comparing them to the concentrations at the rear of the bolter.Method 1 dust control efficiencies ranged from 53.9%to 60.4%.Method 2 efficiencies ranged from 150.5%to 52.2%,and Method 3 efficiencies ranged from 40.7%to 91%.Reasons for negative and low dust control efficiencies are provided in this paper and include:incorrect sampling locations,large distance between CAC and operator,and contamination of intake air from line curtain.Low dust concentrations encountered during the testing made it difficult to discern whether differences in concentrations were due to the CAC or due to variances inherent in experimental dust measurement.However,the analyses,especially the Method 3 analysis,show that the CAC can be an effective dust control device.展开更多
In order to solve the surrounding rock control problem of large section gangue replacement roadway under complicated conditions, this paper analyzed the impact to the roadway controlling produced by the geological con...In order to solve the surrounding rock control problem of large section gangue replacement roadway under complicated conditions, this paper analyzed the impact to the roadway controlling produced by the geological conditions such as high ground stress, folded structure tilted roof asymmetry and soft wall rock, and built the tilt layered roof structural mechanics model to clarify the increase span mechanism of the weak coal instability. Then, we proposed the combined control system including roof inclined truss cable, coal-side cable-channel steel and intensive bolt support. And then by building the structural mechanics model of roof inclined truss cable system, the support principle was described. Besides, according to this model, we deduced the calculation formula of cable anchoring force and its tensile stress. Finally surrounding rock control technology of large section roadway in fold coal pillar area was formed. Field practice shows that the greatest roof convergence of gangue replacement roadway is 158 mm and coal-side deformation is 243 mm. Roadway deformation is controlled effectively and technical support is provided for replacement mining.展开更多
The EGAT Mae Moh Mine is the largest open pit lignite mine in Thailand and it produces lignite about 16 million tons annually. In the near future, the pit limit of the mine will be reached and underground mine will th...The EGAT Mae Moh Mine is the largest open pit lignite mine in Thailand and it produces lignite about 16 million tons annually. In the near future, the pit limit of the mine will be reached and underground mine will then be developed through the open pit in the depth of 400 - 600 m from the surface. However, due to the challenges for underground mining such as poor geological conditions, extra thickness (20 - 30 m) of coal seams, and weak mechanical properties of coal seams and the surrounding rock, the success possibility of underground mining and an applicable underground mining method is being investigated at the present. The paper discusses the applicability of multi-slice bord-and-pillar method for the soft extra thick coal seams in the Mae Moh mine by means of numerical analyses using the 3D finite difference code “FLAC3D”.展开更多
Based on the character of upward slicing backfilling mining and the condition of Gonggeyingzi coal mine in Inner Mongolia,this paper describes the studies of the strata behavior and the stress distribution in the proc...Based on the character of upward slicing backfilling mining and the condition of Gonggeyingzi coal mine in Inner Mongolia,this paper describes the studies of the strata behavior and the stress distribution in the process of backfilling mining in extra-thick coal seams.This was achieved by setting up and analyzing the elastic foundation beam model using the ABAQUS software.The results show that:(1) With the gradual mining of different slices,the roof appears to bend continuously but does not break.The vertical stress in the roof decreases and the decreasing amplitude reduces,while the tensile stress in the roof grows with the mining slices and the maximum tensile stress will not exceed the allowable tensile stress.(2) The front vertical stress at the working face exceeds the rear vertical stress and both show a trend of decrease with decreasing amplitude of decrease.(3) The slices mined early have more influence on the surrounding rock than the later ones.Similarly,the strata behavior experiences the same trend.The field measured data show that the roof does not break during the mining process,which is consistent with the conclusion.展开更多
Automatic roadway formation by roof cutting is a sustainable nonpillar mining method that has the potential to increase coal recovery,reduce roadway excavation and improve mining safety.In this method,roof cutting is ...Automatic roadway formation by roof cutting is a sustainable nonpillar mining method that has the potential to increase coal recovery,reduce roadway excavation and improve mining safety.In this method,roof cutting is the key process for stress relief,which significantly affects the stability of the formed roadway.This paper presents a directionally single cracking(DSC)technique for roof cutting with considerations of rock properties.The mechanism of the DSC technique was investi-gated by explicit finite element analyses.The DSC technique and roof cutting parameters were evaluated by discrete element simulation and field experiment.On this basis,the optimized DSC technique was tested in the field.The results indicate that the DSC technique could effectively control the blast-induced stress distribution and crack propagation in the roof rock,thus,achieve directionally single cracking on the roadway roof.The DsC technique for roof cutting with optimized parameters could effectively reduce the deformation and improve the stability of the formed roadway.Field engineering application verified the feasibility and effectiveness of the evaluated DSC technique for roof cutting.展开更多
Lithology is one of the important factors influencing the stability of roof of coal seams. In order to investigate this, the phenomenon of underground pressure and distribution of pressure were studied by using the lo...Lithology is one of the important factors influencing the stability of roof of coal seams. In order to investigate this, the phenomenon of underground pressure and distribution of pressure were studied by using the local observation and simulation test with similar materials. The observation results show that the distance of initial weighting and periodic weighting of the mudstone roof is shorter than that of sandstone roofs. The sandstone roof with a high strength has a longer distance of initial weighting and periodic weighting, the abutment stress on the working face is big and the height of caving and fracture zone is high. The peak point of abutment stress in the sandstone roof is near to the working face and the pressure bump is inclined to occur. The result is contrary to that in case of the mudstone roof with a low strength. While in the transition zone of nipped sandstone, roof rock-mass is broken and is poor in stability, therefore, it is difficult to hold the roof.展开更多
基金support from the National Key R&D Program of China(Grant No.2022YFC3004704)the National Natural Science Foundation of China(Grant No.52374241)the National Natural Science Foundation of China Youth Foundation(Grant No.52104230).
文摘In light of the escalating global energy imperatives,mining of challenging-to-access resources,such as steeply inclined extra-thick coal seams(SIEC),has emerged as one of the future trends within the domain of energy advancement.However,there is a risk of gas and coal spontaneous combustion coupling disasters(GCC)within the goaf of SIEC due to the complex goaf structure engendered by the unique mining methodologies of SIEC.To ensure that SIEC is mined safely and efficiently,this study conducts research on the GCC within the goaf of SIEC using field observation,theoretical analysis,and numerical modeling.The results demonstrate that the dip angle,the structural dimensions in terms of width-to-length ratio,and compressive strength of the overlying rock are the key factors contributing to the goaf instability of SIEC.The gangue was asymmetrically filled,primarily accumulating within the central and lower portions of the goaf,and the filling height increased proportionally with the advancing caving height,the expansion coefficient,and the thickness of the surrounding rock formation.The GCC occurs in the goaf of SIEC,with an air-return side range of 41 m and an air-intake side range of 14 m,at the intersection area of the“<”-shaped oxygen concentration distribution(coal spontaneous combustion)and the“>”-shaped gas concentration distribution(gas explosion).The optimal nitrogen flow rate is 1000 m3/h with an injection port situated 25 m away from the working face for the highest nitrogen diffusion efficacy and lowest risk of gas explosion,coal spontaneous combustion,and GCC.It has significant engineering applications for ensuring the safe mining of SIEC threatened by the GCC.
基金This work was jointly supported by the National Natural Science Foundation of China(No.51974042)the Shanxi Province Science and Technology Plan Exposed Bidding Project(No.20191101015)+3 种基金the Open Project Program of Key Laboratory of Mine Disaster Prevention and Control(No.JMDPC202102)the Scientific Research Project of Introducing Talents in Guizhou University(No.202045)the Open Project Program of National Engineering Technology Research Center of Development and Utilization for Phosphorus Resources(NECP202210)the Growth Project of Young Scientific and Technological Talents in Universities of Guizhou Province(KY2022139).
文摘This work aimed at revealing the mechanism of strong ground pressure behaviour(SGPB)induced by high-position hard roof(HHR).Based on the supporting structures model of HHR,a modified voussoir beam mechanical model for HHR was established by considering the gangue support coefficient,through which the modified expressions of limit breaking span and breaking energy of HHR were deduced.Combined with the relationship between the dynamic-static loading stress of supporting body(hydraulic support and coal wall)and its comprehensive supporting strength,the criteria of ground pressure behaviour(GPB)induced by HHR were discussed.The types of Ⅰ_(1),Ⅰ_(2),Ⅱ_(1),andⅡ_(2) of GPB were interpreted.Results showed that types Ⅰ_(1) and Ⅰ_(2) were the main forms of SGPB in extra-thick coal seam mining.The main manifestation of SGPB was static stress,which was mainly derived from the instability of HHR rather than fracture.Accordingly,an innovative control technology was proposed,which can weaken static load by vertical-well separated fracturing HHR.The research results have been successfully applied to the 8101 working face in Tashan coal mine,Shanxi Province,China.The results of a digital borehole camera observation and stress monitoring proved the rationality of the GPB criteria.The control technology was successful,paving the way for new possibilities to HHR control for safety mining.
文摘One of the most dangerous safety hazard in underground coal mines is roof falls during retreat mining.Roof falls may cause life-threatening and non-fatal injuries to miners and impede mining and transportation operations.As a result,a reliable roof fall prediction model is essential to tackle such challenges.Different parameters that substantially impact roof falls are ill-defined and intangible,making this an uncertain and challenging research issue.The National Institute for Occupational Safety and Health assembled a national database of roof performance from 37 coal mines to explore the factors contributing to roof falls.Data acquired for 37 mines is limited due to several restrictions,which increased the likelihood of incompleteness.Fuzzy logic is a technique for coping with ambiguity,incompleteness,and uncertainty.Therefore,In this paper,the fuzzy inference method is presented,which employs a genetic algorithm to create fuzzy rules based on 109 records of roof fall data and pattern search to refine the membership functions of parameters.The performance of the deployed model is evaluated using statistical measures such as the Root-Mean-Square Error,Mean-Absolute-Error,and coefficient of determination(R_(2)).Based on these criteria,the suggested model outperforms the existing models to precisely predict roof fall rates using fewer fuzzy rules.
基金National Natural Science Foundation of China(11672333).
文摘Indirect fracturing in the roof of broken soft coal seams has been demonstrated to be a feasible technology.In this work,the No.5 coal seam in the Hancheng block was taken as the research object.Based on the findings of true triaxial hydraulic fracturing experiments and field pilot under this technology and the cohesive element method,a 3D numerical model of indirect fracturing in the roof of broken soft coal seams was established,the fracture morphology propagation and evolution law under different conditions was investigated,and analysis of main controlling factors of fracture parameters was conducted with the combination weight method,which was based on grey incidence,analytic hierarchy process and entropy weight method.The results show that“士”-shaped fractures,T-shaped fractures,cross fractures,H-shaped fractures,and“干”-shaped fractures dominated by horizontal fractures were formed.Different parameter combinations can form different fracture morphologies.When the coal seam permeability is lower and the minimum horizontal principal stress difference between layers and fracturing fluid injection rate are both larger,it tends to form“士”-shaped fractures.When the coal seam permeability and minimum horizontal principal stress between layers and perforation position are moderate,cross fractures are easily generated.Different fracture parameters have different main controlling factors.Engineering factors of perforation location,fracturing fluid injection rate and viscosity are the dominant factors of hydraulic fracture shape parameters.This study can provide a reference for the design of indirect fracturing in the roof of broken soft coal seams.
文摘In order to clarify the danger of water breakout in the bottom plate of extra-thick coal seam mining, 2202 working face of a mine in the west is taken as the research object, and it is proposed to use the on-site monitoring means combining borehole peeping and microseismic monitoring, combined with the theoretical analysis to analyze the danger of water breakout in the bottom plate. The results show that: 1) the theoretically calculated maximum damage depth of the bottom plate is 27.5 m, and its layer is located above the Austrian ash aquifer, which has the danger of water breakout;2) the drill hole peeping at the bottom plate of the working face shows that the depth of the bottom plate fissure development reaches 26 m, and the integrity of the water barrier layer has been damaged, so there is the risk of water breakout;3) for the microseismic monitoring of the anomalous area, the bottom plate of the return air downstream channel occurs in the field with a one-week lag, which shows that microseismic monitoring events may reflect the water breakout of the underground. This shows that the microseismic monitoring events can reflect the changes of the underground flow field, which can provide a reference basis for the early warning of water breakout. The research results can provide reference for the prediction of sudden water hazard.
基金Project(2017XKQY012) supported by the Fundamental Research Funds for the Central Universities,ChinaProject(PAPD) supported by the Priority Academic Program Development of Jiangsu Higher Education Institutions,China
文摘Failure of the surrounding rock around a roadway induced by roof separation is one major type of underground roof-fall accidents.This failure can especially be commonly-seen in a bottom-driven roadway within an extra-thick coal seam("bottom-driven roadway"is used throughout for ease of reference),containing weak partings in their roof coal seams.To determine the upper limit position of the roof interlayer separation is the primary premise for roof control.In this study,a mechanical model for predicting the interlayer separation overlying a bottom-driven roadway within an extra-thick coal seam was established and used to deduce the vertical stress,and length,of the elastic,and plastic zones in the rock strata above the wall of the roadway as well as the formulae for calculating the deflection in different regions of rock strata under bearing stress.Also,an approach was proposed,calculating the stratum load,deflection,and limiting span of the upper limit position of the interlayer separation in a thick coal seam.Based on the key strata control theory and its influence of bedding separation,a set of methods judging the upper limit position of the roof interlayer separation were constructed.In addition,the theoretical prediction and field monitoring for the upper limit position of interlayer separation were conducted in a typical roadway.The results obtained by these two methods are consistent,indicating that the methods proposed are conducive to improving roof control in a thick coal seam.
基金provided by the Priority Academic Program Development of Jiangsu Higher Education Institutions of China(No.SZBF2011-6-B35)the Fundamental Research Funds for the Central Universities of China(No.2012LWB42)
文摘Considering the danger of water inrush in mining very thick coal seam under water-rich roof in Majialiang Coal Mine,the universal discrete element(UDEC)software was used to simulate the overburden fracture evolution laws when mining 4#coal seam.Besides,this study researched on the influence of face advancing length,speed and mining height on the height of the water flowing fractured zones(HWFFZ),and analyzed the correlation of face advancing length and change rules of aquifer water levels and goaf water inflow.Based on those mentioned above,this research proposed the following water-controlling technologies:draining the roof water before mining,draining goaf water,reasonable advancing speed and mining thickness.These water-controlling technologies were successfully used in the feld,thus ensured safely mining the very thick coal seam under water-rich roof.
基金sponsored by the Alpha Foundation for the Improvement of Mine Safety and Health, Inc. (Alpha Foundation)the funding provided for this project by the Alpha Foundationpartially funded by the National Institute of Occupational Health and Science (NIOSH) under Grant Number 200-2016-90154.
文摘Although conventional coal mine designs are conservative regarding pillar strength,local failures such as roof-falls and pillar bursts still affect mine safety and operations.Previous studies have identified that discontinuous,layered roof materials have some self-supporting capacity.This research is a preliminary step towards understanding these mechanics in coal-measure rocks.Although others have considered broad conceptual models and simplified analogs for mine roof behavior,this study presents a unique numerical model that more completely represents in-situ roof conditions.The discrete element method(DEM)is utilized to conduct a parametric analysis considering a range of in-situ stress ratios,material properties,and joint networks to determine the parameters controlling the stability of single-entries modeled in two-dimensions.Model results are compared to empirical observations of roof-support effectiveness(ARBS)in the context of the coal mine roof rating(CMRR)system.Results such as immediate roof displacement,overall stability,and statistical relationships between model parameters and outcomes are presented herein.Potential practical applications of this line of research include:(1)roof-support optimization for a range of coal-measure rocks,(2)establishment of a relationship between roof stability and pillar stress,and(3)determination of which parameters are most critical to roof stability and therefore require concentrated evaluation.
基金supported by a NIOSH Capacity Building grant (No. 200-2016-90154) to Drs. G. Walton and E. Holley and collaborators at the Colorado School of Mines
文摘The coal mine roof rating(CMRR) was developed to bridge the gap between geological variation in underground coal mines and engineering design. The CMRR accounts for the compressive strength of the immediate roof, the shear strength and intensity of any discontinuities present, and the moisture sensitivity of the immediate roof. The CMRR has been widely used and validated in Eastern US coal mines, but it has seen limited application in the Western US. This study focuses on roof behavior at a Western coal mine(Mine A). Mine A shows significant lateral geological variation, along with localized faulting and a laterally extensive sandstone channel network. The CMRR is not used to predict roof instability at the mine. It is, therefore, hypothesized that there are other factors that are correlated with roof instability in underground coal mines that could potentially also be considered in conjunction with the CMRR.This hypothesis was tested by collecting 30 CMRR measurements at Mine A. At each measurement location, a binary record of the roof condition(stable or unstable) was made, and other parameters such as depth of cover, presence of faulting, and sandstone channels were also recorded. ANOVA tests showed that the CMRR values and the roof conditions were not strongly correlated, indicating that the CMRR input criteria are not fully predictive of roof stability at this mine. The CMRR values showed statistically significant correlations(p less than 0.05) with faulting as well as with location at an intersection. For areas that had previously experienced roof fall but were currently stable, faulting was correlated with roof condition(p less than 0.05) only when the condition was classified as unstable.
文摘Testing was completed on an earlier roof bolter CAC that used slots to provide a perimeter airflow. NIOSH tested it due to its unique design that differed from canopies that provided uniform airflow. Based upon NIOSH recommendations from the earlier testing, a 3rd generation roof bolter CAC has been developed by J.H. Fletcher & Co. The changes to this CAC involve design modifications to the plenum outlets, using a single row of outlets on the perimeter and a different material for the plenum. This laboratory testing was a continuation of the original perimeter slotted CAC design. Using gravimetric and instantaneous sampling of respirable dust concentrations underneath and outside of the CAC. the laboratory testing was completed using three different blower fans that delivered differing airflows. The maximum plenum airflow velocities ranged from 2.34 to 3.64 m/s (460-716 fpm). Results showed plenum respirable dust concentrations ranging from 34.6% to 49.3% lower than respirable dust concentrations outside the plenum protection zone, thus showing an improvement in protection for the roof bolter operators.
基金supported by the Special Funding Projects of“Sanjin Scholars”Supporting Plan(Grant No.2050205)
文摘Accidents such as support failure and excessive deformation of roadways due to drastic changes in strata behaviors are frequently reported when mining the extra-thick coal seams Nos.3e5 in Datong coal mine with top-coal caving method,which significantly hampers the mine's normal production.To understand the mechanism of strata failure,this paper presented a structure evolution model with respect to strata behaviors.Then the behaviors of strata overlying the extra-thick coal seams were studied with the combined method of theoretical analysis,physical simulation,and field measurement.The results show that the key strata,which are usually thick-hard strata,play an important role in overlying movement and may influence the mining-induced strata behaviors in the working face using top-coal caving method.The structural model of far-field key strata presents a 'masonry beam' type structure when'horizontal O-X' breakage type happens.The rotational motion of the block imposed radial compressive stress on the surrounding rock mass of the roadway.This can induce excessive deformation of roadway near the goaf.Besides,this paper proposed a pre-control technology for the hard roof based on fracture holes and underground roof pre-splitting.It could effectively reduce stress concentration and release the accumulated energy of the strata,when mining underground coal resources with top-coal caving method.
基金supported by the Science Foundation of Guizhou Province of China (No. 20177283)the Special Program for Academic Foster and Innovation research of Guizhou University of China (No. 20175788)
文摘The coal mine roof rating(CMRR) is a measure of roof quality or structure competency for bedded roof types typically of underground coal mines. The CMRR has been used widely in the US, South Africa,Canada and Australia. In order to investigate the application of the CMRR system in Chinese coal mines,two coal mines in China located in Panjiang Coal Field in Guizhou Province were investigated. Field data were collected which is required to calculate the CMRR value based on underground exposure. The CMRR values of 11 locations in two coal mines were calculated. The investigations demonstrated that the chance of mine roof failure is very low if the CMRR value is more than 50, given adequate support is installed in mine. It was found that the CMRR guideline are useful to preliminarily investigate stability in Panjiang Coal Field mines.
基金Staff at Vale Australia,in particular Lachlan Cunningham and Priscilla Page,are thanked for facilitating underground access to the Carborough Downs Mine.The research was kindly supported by Moultrie Group and Golder Associates.
文摘The rock mass rating(RMR)has been used across the geotechnical industry for half a century.In contrast,the coal mine roof rating(CMRR)was specifically introduced to underground coal mines two decades ago to link geological characterization with geotechnical risk mitigation.The premise of CMRR is that strength properties of mine roof rock are influenced by defects typical of coal measures stratigraphy.The CMRR has been used in longwall pillar design,roof support methods,and evaluation of extended cuts,but is rarely evaluated.Here,the RMR and CMRR are applied to a longwall coal mine.Roof rock mass classifications were undertaken at 67 locations across the mine.Both classifications showed marked spatial variability in terms of roof conditions.Normal and reverse faulting occur across the mine,and while no clear relationships exist between rock mass character and faulting,a central graben zone showed heterogeneous rock mass properties,and divergence between CMRR and RMR.Overall,the CMRR data fell within the broad envelope of results reported for extended cuts at Australian and U.S.coal mines.The corollary is that the CMRR is useful,and should not be used in isolation,but rather as a component of a strata control programme.
文摘A 3rd generation roof bolter canopy air curtain(CAC)has been developed and constructed by J.H.Fletcher&Co.,Inc.As with the previous generation of the CAC,this design uses the principle of providing uniform airflow across the canopy area as recommended by the National Institute for Occupational Safety and Health.The new modifications include a plenum that is constructed of a single flat aluminum plate,smaller-diameter airflow openings,and a single row of perimeter nozzles designed to prevent mine air contaminated by respirable dust from entering the CAC protection zone.Field testing was conducted on this new 3rd generation design showing reductions in coal mine respirable dust exposure for roof bolter operators.Dust control efficiencies for the CAC for the left bolter operator(intake side)ranged from approximately 26%–60%,while the efficiencies for the CAC for the right bolter operator(return side)ranged from 3%to 47%.
文摘A 2nd generation roof bolter canopy air curtain(CAC)design was tested by National Institute for Occupational Safety and Health(NIOSH)at a Midwestern underground coal mine.During the study,the roof bolter never operated downwind of the continuous miner.Using a combination of personal Data Rams(pDR)and gravimetric samplers,the dust control efficiency of the roof bolter CAC was ascertained.Performance evaluation was determined using three methods:(1)comparing roof bolter operator concentrations underneath the CAC to roof bolter concentrations outside the CAC,(2)comparing roof bolter operator concentrations underneath the CAC to the concentrations at the rear of the bolter,and finally,(3)using the gravimetric data directly underneath the CAC to correct roof bolter operator concentrations underneath the CAC and comparing them to the concentrations at the rear of the bolter.Method 1 dust control efficiencies ranged from 53.9%to 60.4%.Method 2 efficiencies ranged from 150.5%to 52.2%,and Method 3 efficiencies ranged from 40.7%to 91%.Reasons for negative and low dust control efficiencies are provided in this paper and include:incorrect sampling locations,large distance between CAC and operator,and contamination of intake air from line curtain.Low dust concentrations encountered during the testing made it difficult to discern whether differences in concentrations were due to the CAC or due to variances inherent in experimental dust measurement.However,the analyses,especially the Method 3 analysis,show that the CAC can be an effective dust control device.
文摘In order to solve the surrounding rock control problem of large section gangue replacement roadway under complicated conditions, this paper analyzed the impact to the roadway controlling produced by the geological conditions such as high ground stress, folded structure tilted roof asymmetry and soft wall rock, and built the tilt layered roof structural mechanics model to clarify the increase span mechanism of the weak coal instability. Then, we proposed the combined control system including roof inclined truss cable, coal-side cable-channel steel and intensive bolt support. And then by building the structural mechanics model of roof inclined truss cable system, the support principle was described. Besides, according to this model, we deduced the calculation formula of cable anchoring force and its tensile stress. Finally surrounding rock control technology of large section roadway in fold coal pillar area was formed. Field practice shows that the greatest roof convergence of gangue replacement roadway is 158 mm and coal-side deformation is 243 mm. Roadway deformation is controlled effectively and technical support is provided for replacement mining.
文摘The EGAT Mae Moh Mine is the largest open pit lignite mine in Thailand and it produces lignite about 16 million tons annually. In the near future, the pit limit of the mine will be reached and underground mine will then be developed through the open pit in the depth of 400 - 600 m from the surface. However, due to the challenges for underground mining such as poor geological conditions, extra thickness (20 - 30 m) of coal seams, and weak mechanical properties of coal seams and the surrounding rock, the success possibility of underground mining and an applicable underground mining method is being investigated at the present. The paper discusses the applicability of multi-slice bord-and-pillar method for the soft extra thick coal seams in the Mae Moh mine by means of numerical analyses using the 3D finite difference code “FLAC3D”.
基金sponsored by the National Key Basic Research Program of China (No.2013CB227905)Qinglan Projects of Jiangsu Province
文摘Based on the character of upward slicing backfilling mining and the condition of Gonggeyingzi coal mine in Inner Mongolia,this paper describes the studies of the strata behavior and the stress distribution in the process of backfilling mining in extra-thick coal seams.This was achieved by setting up and analyzing the elastic foundation beam model using the ABAQUS software.The results show that:(1) With the gradual mining of different slices,the roof appears to bend continuously but does not break.The vertical stress in the roof decreases and the decreasing amplitude reduces,while the tensile stress in the roof grows with the mining slices and the maximum tensile stress will not exceed the allowable tensile stress.(2) The front vertical stress at the working face exceeds the rear vertical stress and both show a trend of decrease with decreasing amplitude of decrease.(3) The slices mined early have more influence on the surrounding rock than the later ones.Similarly,the strata behavior experiences the same trend.The field measured data show that the roof does not break during the mining process,which is consistent with the conclusion.
基金supported by the National Natural Science Foundation of China(52204164)Fundamental Research Funds for the Central Universities(2022XJSB03)Young Elite Scientists Sponsorship Program by CAST(2021QNRC001),which are gratefully acknowledged.
文摘Automatic roadway formation by roof cutting is a sustainable nonpillar mining method that has the potential to increase coal recovery,reduce roadway excavation and improve mining safety.In this method,roof cutting is the key process for stress relief,which significantly affects the stability of the formed roadway.This paper presents a directionally single cracking(DSC)technique for roof cutting with considerations of rock properties.The mechanism of the DSC technique was investi-gated by explicit finite element analyses.The DSC technique and roof cutting parameters were evaluated by discrete element simulation and field experiment.On this basis,the optimized DSC technique was tested in the field.The results indicate that the DSC technique could effectively control the blast-induced stress distribution and crack propagation in the roof rock,thus,achieve directionally single cracking on the roadway roof.The DsC technique for roof cutting with optimized parameters could effectively reduce the deformation and improve the stability of the formed roadway.Field engineering application verified the feasibility and effectiveness of the evaluated DSC technique for roof cutting.
基金National Natural Science Foundation of China(No.40 172 0 5 9)
文摘Lithology is one of the important factors influencing the stability of roof of coal seams. In order to investigate this, the phenomenon of underground pressure and distribution of pressure were studied by using the local observation and simulation test with similar materials. The observation results show that the distance of initial weighting and periodic weighting of the mudstone roof is shorter than that of sandstone roofs. The sandstone roof with a high strength has a longer distance of initial weighting and periodic weighting, the abutment stress on the working face is big and the height of caving and fracture zone is high. The peak point of abutment stress in the sandstone roof is near to the working face and the pressure bump is inclined to occur. The result is contrary to that in case of the mudstone roof with a low strength. While in the transition zone of nipped sandstone, roof rock-mass is broken and is poor in stability, therefore, it is difficult to hold the roof.