期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Biophysical Regulation of Cell Behavior-Cross Talk between Substrate Stiffness and Nanotopography 被引量:12
1
作者 Yong Yang Kai Wang +1 位作者 Xiaosong Gu Kam W. Leong 《Engineering》 SCIE EI 2017年第1期36-54,共19页
The stiffness and nanotopographical characteristics of the extracellular matrix (ECM) influence numerous developmental, physiological, and pathological processes in vivo. These biophysical cues have therefore been a... The stiffness and nanotopographical characteristics of the extracellular matrix (ECM) influence numerous developmental, physiological, and pathological processes in vivo. These biophysical cues have therefore been applied to modulate almost all aspects of cell behavior, from cell adhesion and spreading to proliferation and differentiation. Delineation of the biophysical modulation of cell behavior is critical to the rational design of new biomaterials, implants, and medical devices. The effects of stiffness and topographical cues on cell behavior have previously been reviewed, respectively; however, the interwoven effects of stiffness and nanotopographical cues on cell behavior have not been well described, despite similarities in phenotypic manifestations. Herein, we first review the effects of substrate stiffness and nanotopography on cell behavior, and then focus on intracellular transmission of the biophysical signals from integrins to nucleus. Attempts are made to connect extracellular regulation of cell behavior with the biophysical cues. We then discuss the challenges in dissecting the biophysical regulation of cell behavior and in translating the mechanistic understanding of these cues to tissue engineering and regenerative medicine. 展开更多
关键词 extracellular matrix stiffness Nanotopography Adhesive ligands Cell behavior
下载PDF
3D microgel with extensively adjustable stiffness and homogeneous microstructure for metastasis analysis of solid tumor
2
作者 Xiaonan Zheng Ying Hou +4 位作者 Qiang Zhang Yajing Zheng Zengnan Wu Xueji Zhang Jin-Ming Lin 《Chinese Chemical Letters》 SCIE CAS CSCD 2023年第11期243-247,共5页
3D microgels with various mechanical properties have been important platforms tumor metastasis analysis,and widely adjustable stiffness is crucial for deeper researches.Herein,by mixing biodegradable polylactic acid(P... 3D microgels with various mechanical properties have been important platforms tumor metastasis analysis,and widely adjustable stiffness is crucial for deeper researches.Herein,by mixing biodegradable polylactic acid(PLA)nanofibers in the modified alginate with different concentrations of Ca^(2+),we significantly enhance the stiffness range of microgels while retaining the pore size,which provides bionic microenvironment for tumor analysis.As a proof of concept,we simulated the mechanical characteristics of breast tumors by encapsulating cells in 3D microgels with diverse stiffness,and analyzed cellular behaviors of two typical breast cancer cell lines:MCF-7 and SUM-159.Results showed that with the addition of 2.0%(w/v)PLA short nanofibers,the Young’s modulus of modified alginate increased more than three-fold.Besides preserving high survival and proliferation rates,both cells also displayed stronger migration ability in soft microgel spheres,where RT-qPCR analysis revealed the underlying changes at the genetic level.This systematic study demonstrated our method is powerful for creating widely adjustable 3D mechanical microenvironment,and the results of cellular behavior analysis shows its promising application prospects in tumorigenesis and progression. 展开更多
关键词 extracellular matrix stiffness Composite hydrogel Polylactic acid(PLA) NANOFIBERS Metastasis analysis Breast cancer
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部