BACKGROUND: The pathogenesis of hepatic fibrosis and cirrhosis is still not fully understood. The extracellular signal-regulated kinase (ERK) pathway is involved in the regulation of cell proliferation and differentia...BACKGROUND: The pathogenesis of hepatic fibrosis and cirrhosis is still not fully understood. The extracellular signal-regulated kinase (ERK) pathway is involved in the regulation of cell proliferation and differentiation. The aim of this study was to investigate the effects of PD98059, a specific inhibitor of ERK, on the cell cycle, cell proliferation, secretion of type I collagen and expression of cyclin D1 mRNA, CDK4 mRNA and transforming growth factor-beta 1 (TGF-beta 1) mRNA in rat hepatic stellate cells (HSCs) stimulated by acetaldehyde. METHODS: Rat HSCs stimulated by acetaldehyde were incubated with PD98059 at different concentrations. The cell cycle was analysed by flow cytometry. Cell proliferation was assessed by the methyl thiazolyl tetrazolium colorimetric assay. The mRNA expression of cyclin D1, CDK4 and TGF-beta 1 was examined using the reverse transcriptase-polymerase chain reaction. Type I collagen in the culture medium was detected by enzyme-linked immunosorbent assay. RESULTS: 20, 50 and 100 mu mol/L PD98059 significantly inhibited the proliferation and provoked a G0/G1-phase arrest of acetaldehyde-induced HSCs in a dose-dependent manner. The secretion of type I collagen and the expression of cyclin D1, CDK4 and TGF-beta 1 mRNA in acetaldehyde-induced HSCs were markedly inhibited by 50 and 100 mu mol/L PD98059, respectively. CONCLUSIONS: The ERK pathway regulates the cell proliferation, secretion of type I collagen and the expression of TGF-beta 1 mRNA in rat HSCs stimulated by acetaldehyde, which is likely related to its regulative effect on the cell cycle.展开更多
In order to investigate the changes in the expression of extracellular signal regulated kinase (ERK1/ERK2) and angiotensin converting enzyme (ACE) in the patients with atrial fibrillation (AF), 52 patients with rheu...In order to investigate the changes in the expression of extracellular signal regulated kinase (ERK1/ERK2) and angiotensin converting enzyme (ACE) in the patients with atrial fibrillation (AF), 52 patients with rheumatic heart diseases were examined. Nineteen patients had chronic persistent AF (AF≥6 months, CAF), 12 patients had paroxymal AF (PAF) and 21 patients had no history of AF. The ERK expression was detected at the mRNA level by reverse transcription polymerase chain reaction, at the protein level by Western blotting and at atrial tissue level by immunohistochemistry. ERK activating kinases (MEK1/2) and ACE were determined by Western blotting techniques. The expression of ERK2 mRNA was increased in the patients with CAF (74±19 U vs sinus rhythm: 32±24 U, P <0.05). Activated ERK1/ERK2 and MEK1/2 were increased to more than 150 % in the patients with AF compared to those with sinus rhythm. No significant difference between CAF and PAF was found. The expression of ACE was three fold increased in the patients with CAF compared to those with sinus rhythm. Patients with AF showed an increased expression of ERK1/ERK2 in atrial interstitial cells and marked atrial fibrosis. An ACE dependent increase in the amounts of activated ERK1/ERK2 in atrial interstitial cells may be one of molecular mechanisms for the development of atrial fibrosis in the patients with AF. These findings may have important impact on the treatment of AF.展开更多
BACKGROUND: Studies have shown that electro-acupuncture at the Ren meridian could improve proliferation of subventricular zone neural stem cells in cerebral-ischemic rats. However, there are few reports on the influe...BACKGROUND: Studies have shown that electro-acupuncture at the Ren meridian could improve proliferation of subventricular zone neural stem cells in cerebral-ischemic rats. However, there are few reports on the influence of electro-acupuncture at the Du meridian on neural stem cell proliferation. OBJECTIVE: To observe the influence of electro-acupuncture at Ren and Du meridians on neural stem cell proliferation in the subventricular zone and altered signal transduction in cerebral ischemia rats. DESIGN, TIME AND SETTING: A randomized, controlled, animal experiment was performed at the Laboratory of Human Anatomy, Medical College of Sun Yat-sen University from May 2006 to February 2008. MATERIALS: Mouse anti-rat bromodeoxyuridine (BrdU) monoclonal antibody was provided by Sigma, USA; mouse anti-rat nestin monoclonal antibody and extracellular signal-regulated protein kinase (ERK) specific inhibitor PD98059 were provided by Calbiochem, Germany; acupuncture needle was provided by Suzhou Acupuncture Supplies, China. METHODS: A total of 126 rats were randomly assigned to four groups: model (n = 36), Du meridian (n = 36), Ren/Du meridian (n = 36), and Ren/Du meridian + PD98059 (n = 18). Rats in the Ren/Du meridian + PD98059 group were observed on days 7 (n = 6) and 14 (n = 12) after cerebral ischemia injury. Rats in the model, Du meridian, and Ren/Du meridian groups were observed on days 7, 14, and 28 after cerebral ischemia injury, with 12 rats per group at each time point. Thread occlusion was used to establish middle cerebral artery occlusion models. Electro-acupuncture was performed at Renzhong (DU 26) and Baihui (DU 20) acupoints in the Du meridian group, as well as Chengjiang (RN 24), Guanyuan (RN 4), Renzhong, and Baihuiacupoints in the Ren/Du meridian and Ren/Du meridian + PD98059 groups 2 days after model establishment. In addition, electro-acupuncture stimulation with disperse-dense waves was performed, with 30 Hz disperse wave, 100 Hz dense wave, and 5 V intensity for 20 minutes. Rats in the Ren/Du meridian + PD98059 group were treated with 0.2 pg PD98059 injection into the subventricular zone, 2 pL per rat. Rats in the model group were not treated with electro-acupuncture. MAIN OUTCOME MEASURES: BrdU/nestin immunofluorescent staining was used to detect proliferating neural stem cells in the subventricular zone of cerebral ischemia rats; Western blot was used to determine phosphorylated ERK1 and 2 (pERK1/2) expression in the subventricular zone. RESULTS: On days 14 and 28 after cerebral ischemia, there were significantly more BrdU-positive and BrdU/nestin-positive cells in the Ren/Du meridian group compared with the Du meridian group (P 〈 0.05). PD98059 decreased the number of BrdU-positive and BrdU/nestin-positive cells induced by electro-acupuncture at the/:ten and Du meridians (P 〈 0.05). On days 7, 14, and 28 after treatment, pERK1/2 expression was significantly greater in the Du meridian and Ren/Du meridian groups compared with the model group (P 〈 0.05). The promoting effect of electro-acupuncture at Ren and Du meridians on ERK1/2 phosphorylation was superior to electro-acupuncture at the Du meridian alone on day 14 after model induction (P 〈 0.05). However, PD98059 completely abolished the promoting effect of electro-acupuncture at Ren/Du meridians on pERK1/2 expression (P 〈 0.05). CONCLUSION: Electro-acupuncture at Ren and Du meridians increased proliferation of subventricular zone neural stem cells, which was related to activation of the ERK pathway in a rat model of cerebral ischemia injury.展开更多
Background:XIAP-associated factor 1(XAF1)negatively regulates the function of the X-linked inhibitor of apoptosis protein(XIAP),a member of the IAP family that exerts antiapoptotic effects.The extracellular signal-reg...Background:XIAP-associated factor 1(XAF1)negatively regulates the function of the X-linked inhibitor of apoptosis protein(XIAP),a member of the IAP family that exerts antiapoptotic effects.The extracellular signal-regulated kinase(ERK)pathway is thought to increase cell proliferation and to protect cells from apoptosis.The aim of the study was to investigate the correlation between the ERK1/2 signaling pathway and XAF1 in colon cancer.Methods:Four human colon cancer cell lines,HCT1116 and Lovo(wildtype p53),DLD1 and SW1116(mutant p53),were used.Lovo stable transfectants with XAF1 sense and antisense were established.The effects of dominant-negative MEK1(DN-MEK1)and MEK-specific inhibitor U0126 on the ERK signaling pathway and expression of XAF1 and XIAP proteins were determined.The transcription activity of core XAF1 promoter was assessed by dual luciferase reporter assay.Cell proliferation was measured by MTT assay.Apoptosis was determined by Hoechst 33258 staining.Results:U0126 increased the expression of XAF1 in a time-and dose-dependent manner.A similar result was obtained in cells transfected with DN-MEK1 treatment.Conversely,the expression of XIAP was down-regulated.Activity of the putative promoter of the XAF1 gene was significantly increased by U0126 treatment and DN-MEK1 transient transfection.rhEGF-stimulated phosphorylation of ERK appeared to have little or no effect on XAF1 expression.Overexpression of XAF1 was more sensitive to U0126-induced apoptosis,whereas down-regulation of XAF1 by antisense reversed U0126-induced inhibition of cell proliferation.Conclusions:XAF1 expression was up-regulated by inhibition of the ERK1/2 pathway through transcriptional regulation,which required de novo protein synthesis.The results suggest that XAF1 mediates apoptosis induced by the ERK1/2 pathway in colon cancer.展开更多
Activation of extracellular signal-regulated kinase 1/2 has been demonstrated in acute brain ischemia. We hypothesized that activated extracellular signal-regulated kinase 1/2 can protect hippocampal neurons from inju...Activation of extracellular signal-regulated kinase 1/2 has been demonstrated in acute brain ischemia. We hypothesized that activated extracellular signal-regulated kinase 1/2 can protect hippocampal neurons from injury in a diabetic model after cerebral ischemia/reperfusion. In this study, transient whole-brain ischemia was induced by four-vessel occlusion in normal and diabetic rats, and extracellular signal-regulated kinase 1/2 inhibitor (U0126) was administered into diabetic rats 30 minutes before ischemia as a pretreatment. Results showed that the number of surviving neurons in the hippocampal CA1 region was reduced, extracellular signal-regulated kinase 1/2 phosphorylation and KuT0 activity were decreased, and pro-apoptotic Bax expression was upregulated after intervention using U0126. These findings demonstrate that inhibition of extracellular signal-regulated kinase 1/2 activity aggravated neuronal loss in the hippocampus in a diabetic rat after cerebral ischemia/reperfusion, further decreased DNA repairing ability and ac- celerated apoptosis in hippocampal neurons. Extracellular signal-regulated kinase 1/2 activation plays a neuroprotective role in hippocampal neurons in a diabetic rat after cerebral ischemia/ reperfusion.展开更多
文摘BACKGROUND: The pathogenesis of hepatic fibrosis and cirrhosis is still not fully understood. The extracellular signal-regulated kinase (ERK) pathway is involved in the regulation of cell proliferation and differentiation. The aim of this study was to investigate the effects of PD98059, a specific inhibitor of ERK, on the cell cycle, cell proliferation, secretion of type I collagen and expression of cyclin D1 mRNA, CDK4 mRNA and transforming growth factor-beta 1 (TGF-beta 1) mRNA in rat hepatic stellate cells (HSCs) stimulated by acetaldehyde. METHODS: Rat HSCs stimulated by acetaldehyde were incubated with PD98059 at different concentrations. The cell cycle was analysed by flow cytometry. Cell proliferation was assessed by the methyl thiazolyl tetrazolium colorimetric assay. The mRNA expression of cyclin D1, CDK4 and TGF-beta 1 was examined using the reverse transcriptase-polymerase chain reaction. Type I collagen in the culture medium was detected by enzyme-linked immunosorbent assay. RESULTS: 20, 50 and 100 mu mol/L PD98059 significantly inhibited the proliferation and provoked a G0/G1-phase arrest of acetaldehyde-induced HSCs in a dose-dependent manner. The secretion of type I collagen and the expression of cyclin D1, CDK4 and TGF-beta 1 mRNA in acetaldehyde-induced HSCs were markedly inhibited by 50 and 100 mu mol/L PD98059, respectively. CONCLUSIONS: The ERK pathway regulates the cell proliferation, secretion of type I collagen and the expression of TGF-beta 1 mRNA in rat HSCs stimulated by acetaldehyde, which is likely related to its regulative effect on the cell cycle.
文摘In order to investigate the changes in the expression of extracellular signal regulated kinase (ERK1/ERK2) and angiotensin converting enzyme (ACE) in the patients with atrial fibrillation (AF), 52 patients with rheumatic heart diseases were examined. Nineteen patients had chronic persistent AF (AF≥6 months, CAF), 12 patients had paroxymal AF (PAF) and 21 patients had no history of AF. The ERK expression was detected at the mRNA level by reverse transcription polymerase chain reaction, at the protein level by Western blotting and at atrial tissue level by immunohistochemistry. ERK activating kinases (MEK1/2) and ACE were determined by Western blotting techniques. The expression of ERK2 mRNA was increased in the patients with CAF (74±19 U vs sinus rhythm: 32±24 U, P <0.05). Activated ERK1/ERK2 and MEK1/2 were increased to more than 150 % in the patients with AF compared to those with sinus rhythm. No significant difference between CAF and PAF was found. The expression of ACE was three fold increased in the patients with CAF compared to those with sinus rhythm. Patients with AF showed an increased expression of ERK1/ERK2 in atrial interstitial cells and marked atrial fibrosis. An ACE dependent increase in the amounts of activated ERK1/ERK2 in atrial interstitial cells may be one of molecular mechanisms for the development of atrial fibrosis in the patients with AF. These findings may have important impact on the treatment of AF.
基金the National Natural Science Foundation of China,No.30371808the Natural Science Foundation of Guangdong Province,No.5009688
文摘BACKGROUND: Studies have shown that electro-acupuncture at the Ren meridian could improve proliferation of subventricular zone neural stem cells in cerebral-ischemic rats. However, there are few reports on the influence of electro-acupuncture at the Du meridian on neural stem cell proliferation. OBJECTIVE: To observe the influence of electro-acupuncture at Ren and Du meridians on neural stem cell proliferation in the subventricular zone and altered signal transduction in cerebral ischemia rats. DESIGN, TIME AND SETTING: A randomized, controlled, animal experiment was performed at the Laboratory of Human Anatomy, Medical College of Sun Yat-sen University from May 2006 to February 2008. MATERIALS: Mouse anti-rat bromodeoxyuridine (BrdU) monoclonal antibody was provided by Sigma, USA; mouse anti-rat nestin monoclonal antibody and extracellular signal-regulated protein kinase (ERK) specific inhibitor PD98059 were provided by Calbiochem, Germany; acupuncture needle was provided by Suzhou Acupuncture Supplies, China. METHODS: A total of 126 rats were randomly assigned to four groups: model (n = 36), Du meridian (n = 36), Ren/Du meridian (n = 36), and Ren/Du meridian + PD98059 (n = 18). Rats in the Ren/Du meridian + PD98059 group were observed on days 7 (n = 6) and 14 (n = 12) after cerebral ischemia injury. Rats in the model, Du meridian, and Ren/Du meridian groups were observed on days 7, 14, and 28 after cerebral ischemia injury, with 12 rats per group at each time point. Thread occlusion was used to establish middle cerebral artery occlusion models. Electro-acupuncture was performed at Renzhong (DU 26) and Baihui (DU 20) acupoints in the Du meridian group, as well as Chengjiang (RN 24), Guanyuan (RN 4), Renzhong, and Baihuiacupoints in the Ren/Du meridian and Ren/Du meridian + PD98059 groups 2 days after model establishment. In addition, electro-acupuncture stimulation with disperse-dense waves was performed, with 30 Hz disperse wave, 100 Hz dense wave, and 5 V intensity for 20 minutes. Rats in the Ren/Du meridian + PD98059 group were treated with 0.2 pg PD98059 injection into the subventricular zone, 2 pL per rat. Rats in the model group were not treated with electro-acupuncture. MAIN OUTCOME MEASURES: BrdU/nestin immunofluorescent staining was used to detect proliferating neural stem cells in the subventricular zone of cerebral ischemia rats; Western blot was used to determine phosphorylated ERK1 and 2 (pERK1/2) expression in the subventricular zone. RESULTS: On days 14 and 28 after cerebral ischemia, there were significantly more BrdU-positive and BrdU/nestin-positive cells in the Ren/Du meridian group compared with the Du meridian group (P 〈 0.05). PD98059 decreased the number of BrdU-positive and BrdU/nestin-positive cells induced by electro-acupuncture at the/:ten and Du meridians (P 〈 0.05). On days 7, 14, and 28 after treatment, pERK1/2 expression was significantly greater in the Du meridian and Ren/Du meridian groups compared with the model group (P 〈 0.05). The promoting effect of electro-acupuncture at Ren and Du meridians on ERK1/2 phosphorylation was superior to electro-acupuncture at the Du meridian alone on day 14 after model induction (P 〈 0.05). However, PD98059 completely abolished the promoting effect of electro-acupuncture at Ren/Du meridians on pERK1/2 expression (P 〈 0.05). CONCLUSION: Electro-acupuncture at Ren and Du meridians increased proliferation of subventricular zone neural stem cells, which was related to activation of the ERK pathway in a rat model of cerebral ischemia injury.
基金Shanghai Medical Key Discipline Construction Foundation(05-Ⅲ-005-017).
文摘Background:XIAP-associated factor 1(XAF1)negatively regulates the function of the X-linked inhibitor of apoptosis protein(XIAP),a member of the IAP family that exerts antiapoptotic effects.The extracellular signal-regulated kinase(ERK)pathway is thought to increase cell proliferation and to protect cells from apoptosis.The aim of the study was to investigate the correlation between the ERK1/2 signaling pathway and XAF1 in colon cancer.Methods:Four human colon cancer cell lines,HCT1116 and Lovo(wildtype p53),DLD1 and SW1116(mutant p53),were used.Lovo stable transfectants with XAF1 sense and antisense were established.The effects of dominant-negative MEK1(DN-MEK1)and MEK-specific inhibitor U0126 on the ERK signaling pathway and expression of XAF1 and XIAP proteins were determined.The transcription activity of core XAF1 promoter was assessed by dual luciferase reporter assay.Cell proliferation was measured by MTT assay.Apoptosis was determined by Hoechst 33258 staining.Results:U0126 increased the expression of XAF1 in a time-and dose-dependent manner.A similar result was obtained in cells transfected with DN-MEK1 treatment.Conversely,the expression of XIAP was down-regulated.Activity of the putative promoter of the XAF1 gene was significantly increased by U0126 treatment and DN-MEK1 transient transfection.rhEGF-stimulated phosphorylation of ERK appeared to have little or no effect on XAF1 expression.Overexpression of XAF1 was more sensitive to U0126-induced apoptosis,whereas down-regulation of XAF1 by antisense reversed U0126-induced inhibition of cell proliferation.Conclusions:XAF1 expression was up-regulated by inhibition of the ERK1/2 pathway through transcriptional regulation,which required de novo protein synthesis.The results suggest that XAF1 mediates apoptosis induced by the ERK1/2 pathway in colon cancer.
基金supported by the Hebei Province Natural Science Program,No.H2012401007a grant from the foundation Key Project of Hebei Province Education Ministry,No.ZD2010106
文摘Activation of extracellular signal-regulated kinase 1/2 has been demonstrated in acute brain ischemia. We hypothesized that activated extracellular signal-regulated kinase 1/2 can protect hippocampal neurons from injury in a diabetic model after cerebral ischemia/reperfusion. In this study, transient whole-brain ischemia was induced by four-vessel occlusion in normal and diabetic rats, and extracellular signal-regulated kinase 1/2 inhibitor (U0126) was administered into diabetic rats 30 minutes before ischemia as a pretreatment. Results showed that the number of surviving neurons in the hippocampal CA1 region was reduced, extracellular signal-regulated kinase 1/2 phosphorylation and KuT0 activity were decreased, and pro-apoptotic Bax expression was upregulated after intervention using U0126. These findings demonstrate that inhibition of extracellular signal-regulated kinase 1/2 activity aggravated neuronal loss in the hippocampus in a diabetic rat after cerebral ischemia/reperfusion, further decreased DNA repairing ability and ac- celerated apoptosis in hippocampal neurons. Extracellular signal-regulated kinase 1/2 activation plays a neuroprotective role in hippocampal neurons in a diabetic rat after cerebral ischemia/ reperfusion.