期刊文献+
共找到3,178篇文章
< 1 2 159 >
每页显示 20 50 100
Overexpression of mitogen-activated protein kinase phosphatase-1 in endothelial cells reduces blood-brain barrier injury in a mouse model of ischemic stroke
1
作者 Xiu-De Qin Tai-Qin Yang +6 位作者 Jing-Hui Zeng Hao-Bin Cai Shao-Hua Qi Jian-Jun Jiang Ying Cheng Long-Sheng Xu Fan Bu 《Neural Regeneration Research》 SCIE CAS CSCD 2023年第8期1743-1749,共7页
Ischemic stroke can cause blood-brain barrier(BBB)injury,which worsens brain damage induced by stroke.Abnormal expression of tight junction proteins in endothelial cells(ECs)can increase intracellular space and BBB le... Ischemic stroke can cause blood-brain barrier(BBB)injury,which worsens brain damage induced by stroke.Abnormal expression of tight junction proteins in endothelial cells(ECs)can increase intracellular space and BBB leakage.Selective inhibition of mitogen-activated protein kinase,the negative regulatory substrate of mitogen-activated protein kinase phosphatase(MKP)-1,improves tight junction protein function in ECs,and genetic deletion of MKP-1 aggravates ischemic brain injury.However,whether the latter affects BBB integrity,and the cell type-specific mechanism underlying this process,remain unclear.In this study,we established an adult male mouse model of ischemic stroke by occluding the middle cerebral artery for 60 minutes and overexpressed MKP-1 in ECs on the injured side via lentiviral transfection before stroke.We found that overexpression of MKP-1 in ECs reduced infarct volume,reduced the level of inflammatory factors interleukin-1β,interleukin-6,and chemokine C-C motif ligand-2,inhibited vascular injury,and promoted the recovery of sensorimotor and memory/cognitive function.Overexpression of MKP-1 in ECs also inhibited the activation of cerebral ischemia-induced extracellular signal-regulated kinase(ERK)1/2 and the downregulation of occludin expression.Finally,to investigate the mechanism by which MKP-1 exerted these functions in ECs,we established an ischemic stroke model in vitro by depriving the primary endothelial cell of oxygen and glucose,and pharmacologically inhibited the activity of MKP-1 and ERK1/2.Our findings suggest that MKP-1 inhibition aggravates oxygen and glucose deprivation-induced cell death,cell monolayer leakage,and downregulation of occludin expression,and that inhibiting ERK1/2 can reverse these effects.In addition,co-inhibition of MKP-1 and ERK1/2 exhibited similar effects to inhibition of ERK1/2.These findings suggest that overexpression of MKP-1 in ECs can prevent ischemia-induced occludin downregulation and cell death via deactivating ERK1/2,thereby protecting the integrity of BBB,alleviating brain injury,and improving post-stroke prognosis. 展开更多
关键词 blood-brain barrier brain injury cerebral ischemia endothelial cells extracellular signal-regulated kinase 1/2 functional recovery mitogenactivated protein kinase phosphatase 1 OCCLUDIN oxygen and glucose deprivation transient middle cerebral artery occlusion
下载PDF
Caffeic acid phenethyl ester up-regulates antioxidant levels in hepatic stellate cell line T6 via an Nrf2-mediated mitogen activated protein kinases pathway 被引量:11
2
作者 Ning Yang Juan-Juan Shi +6 位作者 Feng-Ping Wu Mei Li Xin Zhang Ya-Ping Li Song Zhai Xiao-Li Jia Shuang-Suo Dang 《World Journal of Gastroenterology》 SCIE CAS 2017年第7期1203-1214,共12页
AIM To investigate the antioxidant effect of caffeic acid phenethyl ester(CAPE) in hepatic stellate cell-T6(HSC-T6) cells cultured in vitro and the potential mechanisms.METHODS HSC-T6 cells were cultured in vitro and ... AIM To investigate the antioxidant effect of caffeic acid phenethyl ester(CAPE) in hepatic stellate cell-T6(HSC-T6) cells cultured in vitro and the potential mechanisms.METHODS HSC-T6 cells were cultured in vitro and treated with various concentrations of CAPE for 24, 48 and 72 h, respectively. Cell proliferation was investigated using the MTT assay, and cell ultrastructural alterations were observed by transmission electron microscopy. Flow cytometry was employed to investigate the effects of CAPE on apoptosis and the levels of reactive oxygen species in HSC-T6 cells cultured in vitro. An enzyme immunoassay instrument was used to evaluate antioxidant enzyme expression. The effect on α-smooth muscle actin was shown using immunofluorescence. Gene and protein levels of Nrf2, related factors, and mitogen activated protein kinases(MAPKs), in HSC-T6 cells were detected using RT-PCR and Western blot, respectively.RESULTS CAPE inhibited the proliferation and activation of HSC-T6 cells cultured in vitro. CAPE increased the antioxidant levels and the translocation of Nrf2 from the cytoplasm to the nucleus in HSC-T6 cells. Moreover,the phosphorylation of MAPKs in cells decreased in response to CAPE. Interestingly, CAPE-induced oxidative stress in the cells was significantly attenuated by pretreatment with MAPKs inhibitors.CONCLUSION CAPE inhibits cell proliferation and up-regulates the antioxidant levels in HSC-T6 cells partly through the Nrf2-MAPKs signaling pathway. 展开更多
关键词 咖啡的酸 phenethyl 酉旨 肝纤维变性 ANTIOXIDATION Nrf2 mitogen 激活蛋白质 kinases
下载PDF
Downregulation of cold-inducible RNA-binding protein activates mitogen-activated protein kinases and impairs spermatoRenic function in mouse testes 被引量:7
3
作者 Zhi-Ping Xia Xin-Min Zheng +3 位作者 Hang Zheng Xiao-Jun Liu Gui-Yong Liu Xing-Huan Wang 《Asian Journal of Andrology》 SCIE CAS CSCD 2012年第6期884-889,共6页
Cold-inducible RNA-binding protein (CIRP) is an RNA-binding protein that is expressed in normal testes and downregulated after heat stress caused by cryptorchidism, varicocele or environmental temperatures. The purp... Cold-inducible RNA-binding protein (CIRP) is an RNA-binding protein that is expressed in normal testes and downregulated after heat stress caused by cryptorchidism, varicocele or environmental temperatures. The purpose of this study was to investigate the functions of CIRP in the testes. We employed RNAi technique to knock down the expression of CIRP in the testes, and performed haematoxylin and eosin staining to evaluate morphological changes following knockdown. Germ cell apoptosis was examined by terminal deoxynucleotidal transferase-mediated dUTP nick end labelling (TUNEL) assay, and mitogen-activated protein kinase (MAPK) signalling pathways were investigated by Western blotting to determine the possible mechanism of apoptosis. We found that using siRNA is a feasible and reliable method for knocking down gene expression in the testes. Compared to controls, the mean seminiferous tubule diameter (MSTD) and the thickness of the germ cell layers decreased following siRNA treatment, whereas the percentage of apoptotic seminiferous tubules increased. The p44/p42, p38 and SAPK/JNK MAPK pathways were activated after downregulation of CIRP. In conclusion, we discovered that downregulation of CIRP resulted in increased germ cell apoptosis, possibly viathe activation of the p44/p42, p38 and SAPK/JNK MAPK pathways. 展开更多
关键词 cold-inducible RNA-binding protein (CIRP) mitogen-activated protein kinase (MAPK) siRNA in vivo SPERMATOGENESIS heat stress male infertility
下载PDF
Evidence for a role of mitogen-activated protein kinases in the treatment of experimental acute pancreatitis 被引量:2
4
作者 Natasha Irrera Alessandra Bitto +2 位作者 Monica Interdonato Francesco Squadrito Domenica Altavilla 《World Journal of Gastroenterology》 SCIE CAS 2014年第44期16535-16543,共9页
Acute pancreatitis(AP) is an inflammatory disease characterized by acute inflammation and necrosis of the pancreatic parenchyma. AP is often associated with organ failure, sepsis, and high mortality. The pathogenesis ... Acute pancreatitis(AP) is an inflammatory disease characterized by acute inflammation and necrosis of the pancreatic parenchyma. AP is often associated with organ failure, sepsis, and high mortality. The pathogenesis of AP is still not well understood. In recent years several papers have highlighted the cellular and molecular events of acute pancreatitis. Pancreatitis is initiated by activation of digestive enzymes within the acinar cells that are involved in autodigestion of the gland, followed by a massive infiltration of neutrophils and macrophages and release of inflammatory mediators, responsible for the local and systemic inflammatory response. The hallmark of AP is parenchymal cell necrosis that represents the cause of the high morbidity and mortality, so that new potential therapeutic approaches are indispensable for the treatment of patients at high risk of complications. However, not all factors that determine the onset and course of the disease have been explained. Aim of this article is to review the role of mitogen-activated protein kinases in pathogenesis of acute pancreatitis. 展开更多
关键词 EXPERIMENTAL ACUTE PANCREATITIS mitogen-activated
下载PDF
Mechanism of Retinoic Acid and Mitogen-activated Protein Kinases Regulating Hyperoxia Lung Injury 被引量:3
5
作者 李文斌 常立文 +5 位作者 容志惠 张谦慎 王华 汪鸿 刘春梅 刘伟 《Journal of Huazhong University of Science and Technology(Medical Sciences)》 SCIE CAS 2006年第2期178-181,共4页
To investigate the protective effect of retinoic acid (RA) on hyperoxic lung injury and the role of RA as a modulator on mitogen-activated protein kinases (MAPKs), gastation 21 d Sprague- Dawley (SD) fetuses (t... To investigate the protective effect of retinoic acid (RA) on hyperoxic lung injury and the role of RA as a modulator on mitogen-activated protein kinases (MAPKs), gastation 21 d Sprague- Dawley (SD) fetuses (term = 22 d) were delivered by hysterotomy. Within 12-24 h of birth, premature rat pups were randomly divided into 4 groups (n= 12 each) : air-exposed control group (group Ⅰ ) ; hyperoxia-exposed group ( group Ⅱ ), air-exposed plus RA group (group Ⅲ ), hyperoxia-exposed plus RA group (group Ⅳ). Group Ⅰ , Ⅲ were kept in room air, and group Ⅱ , Ⅳ were placed in 85 % oxygen. The pups in groups Ⅲ and Ⅳ were intraperitoneally injected with RA (500 μg/kg every day). All lung tissues of premature rat pups were collected at the 4th day after birth. Terminal transferase d-UTP nick end labeling (TUNEL) staining was used for the detection of cell apoptosis. The expression of PCNA was immunohistochemically detected. Western blot analysis was employed for the determination of phosphorylated and total nonphosphorylated ERKs, JNKs or p38. Our results showed that lungs from the pups exposed to hyperoxia for 4 d exhibited TUNEL-positive nuclei increased markedly throughout the parenchyma (P〈0.01), and decreased significantly after RA treatment (P〈0.01). The index of PCNA-positive cells was significantly decreased (P〈0.01), and was significantly increased by RA treatment (P〈0.01). The air-space size was significantly enlarged, secondary crests were markedly decreased in hyperoxia-exposed animals. RA treatment improved lung air spaces and secondary crests in air-exposed pups, hut had no effect on hyperoxia-exposure pups. Western blotting showed that the amounts of JNK, p38 and ERK proteins in hyperoxia-exposure or RA-treated lung tissues were same as those in untreated lung tissues (P〈0.05), whereas activation of these MAPKs was markedly altered by hyperoxia and RA. After hyperoxia exposure, p-ERK1/2, p-JNK1/2 and p-p38 were dramatically increased (P〈0.01), whereas p-JNK1/2 and p-p38 were markedly declined and p-ERK1/2 was further elevated by RA treatment (P〈0.01). It is concluded that RA could decrease cell apoptosis and stimulate cell proliferation under hyperoxic condition. The protection Of RA on hyperoxia-induced lung injury was related'to the regulation of MAP kinase activation. 展开更多
关键词 hyperoxia lung injury mitogen-activated protein kinases retinoic acid APOPTOSIS PROLIFERATION
下载PDF
Retinoic Aacid Diminished the Expression of MMP-2 in Hyperoxia-exposed Premature Rat Lung Fibroblasts through Regulating Mitogen-activated Protein Kinases 被引量:1
6
作者 李文斌 常立文 +1 位作者 容志惠 刘伟 《Journal of Huazhong University of Science and Technology(Medical Sciences)》 SCIE CAS 2011年第2期251-257,共7页
This study examined the effects of retinoic acid (RA), PD98059, SP600125 and SB203580 on the hyperoxia-induced expression and regulation of matrix metalloproteinase-2 (MMP-2) and metalloproteinase-2 (TIMP-2) in ... This study examined the effects of retinoic acid (RA), PD98059, SP600125 and SB203580 on the hyperoxia-induced expression and regulation of matrix metalloproteinase-2 (MMP-2) and metalloproteinase-2 (TIMP-2) in premature rat lung fibroblasts (LFs). LFs were exposed to hyperoxia or room air for 12 h in the presence of RA and the kinase inhibitors PD98059 (ERK1/2), SP600125 (JNK1/2) and SB203580 (p38) respectively. The expression levels of MMP-2 and TIMP-2 mRNA were detected by semi-quantitative reverse transcription polymerase chain reaction (RT-PCR). MMP-2 activity was measured by zymography. The amount of p-ERK1/2, REK1/2, p-JNK1/2, JNK1/2, p-p38 and p38 was determined by Western blotting. The results showed that: (1) PD98059, SP600125 and SB203580 significantly inhibited p-ERK1/2, p-JNK1/2 and p-p38 respectively in LFs; (2) The expression of MMP-2 mRNA in LFs exposed to hyperoxia was decreased after treatment with RA, SP600125 and SB203580 respectively (P0.01 or 0.05), but did not change after treatment with PD98059 (P0.05). Meanwhile, RA, PD98059, SP600125 and SB203580 had no effect on the expression of TIMP-2 mRNA in LFs exposed to room air or hyperoxia (P0.05); (3) The expression of pro- and active MMP-2 experienced no change after treatment with RA or SP600125 in LFs exposed to room air (P0.05), but decreased remarkably after hyperoxia (P0.01 or 0.05). SB203580 inhibited the expression of pro- and active MMP-2 either in room air or under hyperoxia (P0.01). PD98059 exerted no effect on the expression of pro- and active MMP-2 (P0.05). It was suggested that RA had a protective effect on hyperoxia-induced lung injury by down-regulating the expression of MMP-2 through decreasing the JNK and p38 activation in hyperoxia. 展开更多
关键词 HYPEROXIA retinoic acid lung fibroblasts premature rats matrix metalloproteinase-2 mitogen-activated protein kinases
下载PDF
Differential activation of mitogen-activated protein kinases by γ-irradi-ation in IEC-6 cells: Role of intracellular Ca^(2+)
7
作者 周舟 王小华 +5 位作者 Igisu Hideki 林远 楼淑芬 Matsuoka Masato 程天民 余争平 《Journal of Medical Colleges of PLA(China)》 CAS 2002年第3期181-187,共7页
Abstract Objective:To explore the effects of γ-irradiation on mitogen-activatedprotein kinases(MAPKs) and role intracellular calcium in this event in intestinal epithelial cell line 6(IEC-6 cells).Methods:After cultu... Abstract Objective:To explore the effects of γ-irradiation on mitogen-activatedprotein kinases(MAPKs) and role intracellular calcium in this event in intestinal epithelial cell line 6(IEC-6 cells).Methods:After cultured rat IIEC-6 cells with or without the pretreatment of intracellular Ca^2+ chelator were exposed to γ-ir-radiation of 6 Gy, the total and phosphorylated MAPKs in the cells were determined with Western blotting and apoptosis was examined with flow cytometry.Activities of Extracellular signal-regulated protein kinase (ERK) and p38 MAPK were determined by using immuoprecipitation followed by Western blotting.Results:In response to γ-irradiation,phosphorylation of ERK was not significantly observed ,while the levels of phos-phorylated c-Jun NH2-terminal kinase(JNK) and p38 MAPK were increased in 30 min and reached the peak 2h after exposure to 6Gy γ-irradiation,though the cell viability was significantly lowered 12h.On the other hand, no obvious changes were seen in the total protein levels of ERK, JNK and p38 MAPK.Chelation of in-tracellular Ca^2+ almost completely suppressed the JNK and p38 MAPK phosphorylation induced by γ-irradiation is a potent activator for JNK and p38 MAPK, and Ca^2+ mobilized from intracellular stores plays an important role in the activation of MAPKs and the induction of apoptosis in IEC-6 cells. 展开更多
关键词 分裂素活化蛋白激酶 活化差异 细胞凋亡 Γ-辐射 IEC-6细胞 细胞内钙离子 信号转导
下载PDF
Neuroprotective mechanisms of rutin for spinal cord injury through anti-oxidation and anti-inflammation and inhibition of p38 mitogen activated protein kinase pathway 被引量:9
8
作者 Hong-liang Song Xiang Zhang +5 位作者 Wen-zhao Wang Rong-han Liu Kai Zhao Ming-yuan Liu Wei-ming Gong Bin Ning 《Neural Regeneration Research》 SCIE CAS CSCD 2018年第1期128-134,共7页
Rutin has anti-inflammatory, antioxidant, anti-viral, anti-tumor and immune regulatory effects. However, the neuroprotective effects of rutin in spinal cord injury are unknown. The p38 mitogen activated protein kinase... Rutin has anti-inflammatory, antioxidant, anti-viral, anti-tumor and immune regulatory effects. However, the neuroprotective effects of rutin in spinal cord injury are unknown. The p38 mitogen activated protein kinase (p38 MAPK) pathway is the most important member of the MAPK family that controls inflammation. We assumed that the mechanism of rutin in the repair of spinal cord injury is associated with the inhibition of p38 MAPK pathway. Allen’s method was used to establish a rat model of spinal cord injury. The rat model was intraperitoneally injected with rutin (30 mg/kg) for 3 days. After treatment with rutin, Basso, Beattie and Bresnahan locomotor function scores increased. Water content, tumor necrosis factor alpha, interleukin 1 beta, and interleukin 6 levels, p38 MAPK protein expression and caspase-3 and -9 activities in T8–9 spinal cord decreased. Oxidative stress related markers superoxide dismutase and glutathione peroxidase levels increased in peripheral blood. Rutin exerts neuroprotective effect through anti-oxidation, anti-inflammation, anti-apoptosis and inhibition of p38 MAPK pathway. 展开更多
关键词 nerve regeneration spinal cord injury RUTIN oxidative stress antioxidant ANTI-INFLAMMATION p38 mitogen activated protein kinase pathway ANTI-APOPTOSIS caspase-3 caspase-9 neural regeneration
下载PDF
Physiological roles of mitogen-activated-protein-kinase-activated p38-regulated/activated protein kinase 被引量:8
9
作者 Sergiy Kostenko Gianina Dumitriu +1 位作者 Kari Jenssen Lgreid Ugo Moens 《World Journal of Biological Chemistry》 CAS 2011年第5期73-89,共17页
Mitogen-activated protein kinases(MAPKs)are a family of proteins that constitute signaling pathways involved in processes that control gene expression,cell division, cell survival,apoptosis,metabolism,differentiation ... Mitogen-activated protein kinases(MAPKs)are a family of proteins that constitute signaling pathways involved in processes that control gene expression,cell division, cell survival,apoptosis,metabolism,differentiation and motility.The MAPK pathways can be divided into conventional and atypical MAPK pathways.The first group converts a signal into a cellular response through a relay of three consecutive phosphorylation events exerted by MAPK kinase kinases,MAPK kinase,and MAPK.Atypical MAPK pathways are not organized into this three-tiered cascade.MAPK that belongs to both conventional and atypical MAPK pathways can phosphorylate both non-protein kinase substrates and other protein kinases.The latter are referred to as MAPK-activated protein kinases.This review focuses on one such MAPK-activated protein kinase,MAPK-activated protein kinase 5(MK5)or p38-regulated/activated protein kinase(PRAK).This protein is highly conserved throughout the animal kingdom and seems to be the target of both conventional and atypical MAPK pathways.Recent findings on the regulation of the activity and subcellular localization,bona fide interaction partners and physiological roles of MK5/PRAK are discussed. 展开更多
关键词 mitogen-activated protein kinasE p38- regulated/activated protein kinasE extracellular signalregulated kinasE protein kinasE A SUBCELLULAR localization Phosphorylation protein interaction
下载PDF
Increased expression of mitogen-activated protein kinase and its upstream regulating signal in human gastric cancer 被引量:15
10
作者 BinLiang ShanWang +3 位作者 Xue-GuangZhu Yong-XiangYu Zhi-RongCui You-ZhiYu 《World Journal of Gastroenterology》 SCIE CAS CSCD 2005年第5期623-628,共6页
AIM: To investigate the expression of mitogen-activated protein kinases (MAPKs) and its upstream protein kinase in human gastric cancer and to evaluate the relationship between protein levels and clinicopathological p... AIM: To investigate the expression of mitogen-activated protein kinases (MAPKs) and its upstream protein kinase in human gastric cancer and to evaluate the relationship between protein levels and clinicopathological parameters.METHODS: Westem blot was used to measure the expression of extracellular signal-regulated kinase (ERK)-1, ERK-2, ERK-3,p38 and mitogen or ERK activated protein kinaseMEK-1proteins in surgically resected gastric carcinoma, adjacent normal mucosa and metastatic lymph nodes from 42 patients.Immunohistochemistry was employed for their localization.RESULTS: Compared with normal tissues, the protein levels of ERK-1 (integral optical density value 159 526±65 760 vs122 807±65 515, P = 0.001), ERK-2 (168 471±95 051 vs120 469±72 874, P<0.001), ERK-3 (118 651±71 513 vs70 934±68 058, P<0.001), P38 (104 776±51 650 vs82 930±40 392, P= 0.048) and MEK-1(116 486±45 725 vs101 434±49 387, P = 0.027) were increased in gastric cancer tissues. Overexpression of ERK-3 was correlated to TNM staging [average ratio of integral optic density (IOD)tumor:IODnormal in TNM Ⅰ, Ⅱ, Ⅲ, Ⅳ tumors was 1.43±0.34,5.08±3.74, 4.99±1.08, 1.44±1.02, n = 42, P = 0.023] and serosa invasion (4.31±4.34 vs 2.00±2.03, P = 0.037). In poorly differentiated cancers (n = 33), the protein levels of ERK-1 and ERK-2 in stage Ⅲ and Ⅳ tumors were higher than those in stage Ⅰ and Ⅱ tumors (2.64±3.01 vs 1.01±0.33,P = 0.022; 2.05±1.54 vs 1.24±0.40, P = 0.030). Gastric cancer tissues with either lymph node involvement (2.49±2.91vs 1.03±0.36, P= 0.023; 1.98±1.49 vs 1.24±0.44, P= 0.036)or serosa invasion (2.39±2.82 vs 1.01±0.35, P = 0.022;1.95±1.44 vs 1.14±0.36, P = 0.015) expressed higher protein levels of ERK-1 and ERK-2. In Borrmann Ⅱ tumors,expression of ERK-2 and ERK-3 was increased compared with Borrmann Ⅲ tumors (2.57±1.86 vs 1.23±0.60, P = 0.022;5.50±5.05 vs 1.83±1.21, P = 0.014). Borrmann Ⅳ tumors expressed higher p38 protein levels. No statistically significant difference in expression of MAPKs was found when stratified to tumor size or histological grade (P>0.05).Protein levels of ERK-2, ERK-3 and MEK-1 in metastatic lymph nodes were 2-7 folds higher than those in adjacent normal mucosa. The immunohistochemistry demonstrated that ERK-1, ERK-2, ERK-3, p38 and MEK-1 proteins were mainly localized in cytoplasm. The expression of MEK-1 in gastric cancer cells metastasized to lymph nodes was higher than that of the primary site.CONCLUSION: MAPKs, particularly ERK subclass are overexpressed in the majority of gastric cancers.Overexpression of ERKs is correlated to TNM staging, serosa invasion, and lymph node involvement. The overexpression of p38 most likely plays a prominent role in certain morphological subtypes of gastric cancers. MEK-1 is also overexpressed in gastric cancer, particularly in metastatic lymph nodes. Upregulation of MAPK signal transduction pathways may play an important role in tumorigenesis and metastatic potential of gastric cancer. 展开更多
关键词 基因表达 有丝分裂 活性蛋白 蛋白质激酶 向上调节信号 胃癌 肿瘤
下载PDF
Mitogen-activated protein kinase signaling pathway and invasion and metastasis of gastric cancer 被引量:12
11
作者 Mei Yang Chang-Zhi Huang 《World Journal of Gastroenterology》 SCIE CAS 2015年第41期11673-11679,共7页
The mortality rate of gastric cancer worldwide is as high as 70%, despite the development of novel therapeutic strategies. One reason for the high mortality is the rapid and uninhibited spread of the disease, such tha... The mortality rate of gastric cancer worldwide is as high as 70%, despite the development of novel therapeutic strategies. One reason for the high mortality is the rapid and uninhibited spread of the disease, such that the majority of patients are diagnosed at a stage when efficient therapeutic treatment is not available. Therefore, in-depth research is needed to investigate the mechanism of gastric cancer metastasis and invasion to improve outcomes and provide biomarkers for early diagnosis. The mitogen-activated protein kinase(MAPK) signaling pathway is widely expressed in multicellular organisms, with critical roles in multiple biological processes, such as cell proliferation, death, differentiation, migration, and invasion. The MAPK pathway typically responds to extracellular stimulation. However, the MAPK pathway is often involved in the occurrence and progression of cancer when abnormally regulated. Many studies have researched the relationship between the MAPK signaling pathway and cancer metastasis and invasion, but little is known about the important roles that the MAPK signaling pathway plays in gastric cancer. Based on an analysis of published data, this review aims to summarize the important role that the MAP kinases play in the invasion and metastasis of gastric cancer and attempts to provide potential directions for further research and clinical treatment. 展开更多
关键词 mitogen-activated protein kinasE GASTRIC cancer Si
下载PDF
Xuebijing alters tumor necrosis factor-alpha, interleukin-1beta and p38 mitogen activated protein kinase content in a rat model of cardiac arrest following cardiopulmonary resuscitation 被引量:2
12
作者 Haifeng Li Mingli Sun Yaxin Yu Xiaoliang Liu 《Neural Regeneration Research》 SCIE CAS CSCD 2011年第33期2573-2576,共4页
We established a rat model of cardiac arrest by clamping the endotracheal tube of adult rats at expiration. Twenty-four hours after cardiopulmonary resuscitation, nerve cell injury and expression of tumor necrosis fac... We established a rat model of cardiac arrest by clamping the endotracheal tube of adult rats at expiration. Twenty-four hours after cardiopulmonary resuscitation, nerve cell injury and expression of tumor necrosis factor-α, interleukin-1β, and p38 mitogen activated protein kinase content were increased. Rats injected with Xuebijing, a Chinese herb compound preparation, exhibited normal cellular structure and morphology, dense neuronal cytoplasm, and decreased tumor necrosis factor-α, interleukin-1β, and p38 mitogen activated protein kinase expression at 24 hours following cardiopulmonary resuscitation. These data suggest that Xuebijing can attenuate neuronal injury induced by hypoxia and reperfusion during cardiopulmonary resuscitation. 展开更多
关键词 cardiac arrest brain tumor necrosis factor-α INTERLEUKIN-1Β p38 mitogen activated protein kinase XUEBIJING cardiopulmonary resuscitation
下载PDF
Inhibition of p38 mitogen-activated protein kinase may decrease intestinal epithelial cell apoptosis and improve intestinal epithelial barrier function after ischemia- reperf usion injury 被引量:8
13
作者 Shu-YunZheng Xiao-BingFu +3 位作者 Jian-GuoXu Jing-YuZhao Tong-ZhuSun WeiChen 《World Journal of Gastroenterology》 SCIE CAS CSCD 2005年第5期656-660,共5页
AIM: To investigate the role of p38 mitogen-activated protein kinase in rat small intestine after ischemia-reperfusion (I/R)insult and the relationship between activation of p38 MAPK and apoptotic cell death of intest... AIM: To investigate the role of p38 mitogen-activated protein kinase in rat small intestine after ischemia-reperfusion (I/R)insult and the relationship between activation of p38 MAPK and apoptotic cell death of intestine.METHODS: Ninety Wistar rats were divided randomly into three groups, namely sham-operated group (C), I/R vehicle group (R) and SB203580 pre-treated group(S).In groups R and S, the superior mesenteric artery(SMA)was separated and occluded for 45 min, then released for reperfusion for0.25, 0.5, 1, 2, 6, 12 and 24 h. In group C, SMA was separated without occlusion. Plasma D-lactate levels were examined and histological changes were observed under a light microscope. The activity of p38 MAPK was determined by Western immunoblotting and apoptotic cells were detected by the terminal deoxynucleotidyl transferase (TdT)-mediated dUDP-biotin nick end labeling (TUNEL).RESULTS: Intestinal ischemia followed by reperfusion activated p38 MAPK, and the maximal level of activation (7.3-fold vs sham-operated group) was reached 30 min after I/R. Treatment with SB 203580, a p38 MAPK inhibitor,reduced intestinal apoptosis (26.72±3.39% vs62.50±3.08%in I/R vehicle, P<0.01) and decreased plasma D-lactate level (0.78±0.15 mmol/L in I/R vehicle vs0.42±0.17 mmol/L in SB-treated group) and improved post-ischemic intestinal histological damage.CONCLUSION: p38 MAPK plays a crucial role in the signal transduction pathway mediating post-ischemic intestinal apoptosis, and inhibition of p38 MAPK may attenuate ischemia-reperfusion injury. 展开更多
关键词 抑制作用作用 P38 有丝分裂 活性蛋白 蛋白激酶 肠上皮细胞 细胞调亡 阻塞功能 局部缺血 多次灌注伤 消化道
下载PDF
H pylori stimulates proliferation of gastric cancer cells through activating mitogen-activated protein kinase cascade 被引量:7
14
作者 Yong-Chang Chen Ying Wang +2 位作者 Jing-Yan Li Wen-Rong Xu You-Li Zhang 《World Journal of Gastroenterology》 SCIE CAS CSCD 2006年第37期5972-5977,共6页
AIM: To explore the mechanism by which H pylori causes activation of gastric epithelial cells. METHODS: A VacA (+) and CagA (+) standard H pylori line NCTC 11637 and a human gastric adenocarcinoma derived gastric epit... AIM: To explore the mechanism by which H pylori causes activation of gastric epithelial cells. METHODS: A VacA (+) and CagA (+) standard H pylori line NCTC 11637 and a human gastric adenocarcinoma derived gastric epithelial cell line BGC-823 were applied in the study. MTT assay and 3H-TdR incorporation test were used to detect the proliferation of BGC-823 cells and Western blotting was used to detect the activity and existence of related proteins. RESULTS: Incubation with H pylori extract increased the proliferation of gastric epithelial cells, reflected by both live cell number and DNA synthesis rate. The activity of extracellular signal-regulated protein kinase (ERK) signal transduction cascade increased within 20 min after in- cubation with H pylori extract and appeared to be a sus- tained event. MAPK/ERK kinase (MEK) inhibitor PD98059 abolished the action of H pylori extract on both ERK activity and cell proliferation. Incubation with H pylori extract increased c-Fos expression and SRE-dependent gene expression. H pylori extract caused phosphorylation of several proteins including a protein with molecular size of 97.4 kDa and tyrosine kinase inhibitor genistein inhibited the activation of ERK and the proliferation of cells caused by H pylori extract. CONCLUSION: Biologically active elements in H pylori extract cause proliferation of gastric epithelial cells through activating tyrosine kinase and ERK signal trans- duction cascade. 展开更多
关键词 幽门螺杆菌 胃癌 蛋白激酶 治疗
下载PDF
Electroacupuncture reduces apoptotic index and inhibits p38 mitogen-activated protein kinase signaling pathway in the hippocampus of rats with cerebral ischemia/reperfusion injury 被引量:18
15
作者 Xiao Lan Xin Zhang +3 位作者 Guo-ping Zhou Chun-xiao Wu Chun Li Xiu-hong Xu 《Neural Regeneration Research》 SCIE CAS CSCD 2017年第3期409-416,共8页
Electroacupuncture attenuates cerebral hypoxia and neuronal apoptosis induced by cerebral ischemia/reperfusion injury.To further identify the involved mechanisms,we assumed that electroacupuncture used to treat cerebr... Electroacupuncture attenuates cerebral hypoxia and neuronal apoptosis induced by cerebral ischemia/reperfusion injury.To further identify the involved mechanisms,we assumed that electroacupuncture used to treat cerebral ischemia/reperfusion injury was associated with the p38 mitogen-activated protein kinase(MAPK) signaling pathway.We established rat models of cerebral ischemia/reperfusion injury using the modified Zea-Longa's method.At 30 minutes before model establishment,p38 MAPK blocker SB20358 was injected into the left lateral ventricles.At 1.5 hours after model establishment,electroacupuncture was administered at acupoints of Chize(LU5),Hegu(LI4),Zusanli(ST36),and Sanyinjiao(SP6) for 20 minutes in the affected side.Results showed that the combination of EA and SB20358 injection significantly decreased neurologic impairment scores,but no significant differences were determined among different interventional groups.Hematoxylin-eosin staining also showed reduced brain tissue injuries.Compared with the SB20358 group,the cells were regularly arranged,the structures were complete,and the number of viable neurons was higher in the SB20358 + electroacupuncture group.Terminal deoxynucleotidyl transferase(Td T)-mediated d UTP nick-end labeling assay showed a decreased apoptotic index in each group,with a significant decrease in the SB20358 + electroacupuncture group.Immunohistochemistry revealed reduced phosphorylated p38 expression at 3 days in the electroacupuncture group and SB20358 + electroacupuncture group compared with the ischemia/reperfusion group.There was no significant difference in phosphorylated p38 expression between the ischemia/reperfusion group and SB20358 group.These findings confirmed that the electroacupuncture effects on mitigating cerebral ischemia/reperfusion injury are possibly associated with the p38 MAPK signaling pathway.A time period of 3 days could promote the repair of ischemic cerebral nerves. 展开更多
关键词 nerve regeneration brain injury ELECTROACUPUNCTURE cell apoptosis cerebral ischemia/reperfusion injury neurological impairment score morphological changes immunohistoehemical assay p38 mitogen-activated protein kinases phosphorylated p38 HIPPOCAMPUS neural regeneration
下载PDF
Cathelicidin stimulates colonic mucus synthesis by up-regulating MUC1 and MUC2 expression through a mitogen-activated protein kinase pathway 被引量:2
16
作者 CHO Chi-hin 《沈阳药科大学学报》 CAS CSCD 北大核心 2008年第S1期3-3,共1页
Objective Mucus forms the physical barrier along the gastrointestinal(GI)tract.It plays an important role to prevent mucosal damage and inflammation.Our previous finding showed that antibacterial peptide 'cathelic... Objective Mucus forms the physical barrier along the gastrointestinal(GI)tract.It plays an important role to prevent mucosal damage and inflammation.Our previous finding showed that antibacterial peptide 'cathelicidin' increased mucus thickness and prevented inflammation in the colon.In the current study,we examined the protective mechanisms by which the peptide increased mucus synthesis in vitro.Methods Human colonic cell line(HT-29)was used to assess the stimulatory action of cathelicidin on mucus synthesis which was measured by the D-[6-3H] glucosamine incorporation assay.Results Human cathelicidin(LL-37)dose-dependently(10-40 μg·mL-1)and significantly stimulated mucus synthesis.Real-time PCR data showed that addition of LL-37 induced more than 50% increase in MUC1 and MUC2 mRNA levels.Treatment with MUC1 and MUC2 siRNAs normalized the stimulatory action of LL-37 on mucus synthesis.LL-37 also activated the phosphorylation of mitogen-activated protein(MAP)kinase in the cells.A specific inhibitor of the MAP kinase pathway,U0126,completely blocked the increase of MUC1 and MUC2 expression as well as mucus synthesis by LL-37.Conclusions Taken together LL-37 stimulates mucus synthesis through the activation of MUC1 and MUC2 expression and the MAP kinase pathway in human colonic cells. 展开更多
关键词 CATHELICIDIN MUCUS MUCIN mitogen-activated protein kinase
下载PDF
Mitogen-activated protein kinase phosphatase 1 protects PC12 cells from amyloid beta-induced neurotoxicity 被引量:6
17
作者 Yue Gu Lian-Jun Ma +4 位作者 Xiao-Xue Bai Jing Jie Xiu-Fang Zhang Dong Chen Xiao-Ping Li 《Neural Regeneration Research》 SCIE CAS CSCD 2018年第10期1842-1850,共9页
The mitogen-activated protein kinase(MAPK) signaling pathway plays an important role in the regulation of cell growth, proliferation, differentiation, transformation and death. Mitogen-activated protein kinase phosp... The mitogen-activated protein kinase(MAPK) signaling pathway plays an important role in the regulation of cell growth, proliferation, differentiation, transformation and death. Mitogen-activated protein kinase phosphatase 1(MKP1) has an inhibitory effect on the p38 MAPK and JNK pathways, but it is unknown whether it plays a role in Aβ-induced oxidative stress and neuronal inflammation. In this study, PC12 cells were infected with MKP1 sh RNA, MKP1 lentivirus or control lentivirus for 12 hours, and then treated with 0.1, 1, 10 or 100 μM amyloid beta 42(Aβ42). The cell survival rate was measured using the cell counting kit-8 assay. MKP1, tumor necrosis factor-alpha(TNF-α) and interleukin-1β(IL-1β) m RNA expression levels were analyzed using quantitative real time-polymerase chain reaction. MKP1 and phospho-c-Jun N-terminal kinase(JNK) expression levels were assessed using western blot assay. Reactive oxygen species(ROS) levels were detected using 2′,7′-dichlorofluorescein diacetate. Mitochondrial membrane potential was measured using flow cytometry. Superoxide dismutase activity and malondialdehyde levels were evaluated using the colorimetric method. Lactate dehydrogenase activity was measured using a microplate reader. Caspase-3 expression levels were assessed by enzyme-linked immunosorbent assay. Apoptosis was evaluated using the terminal deoxynucleotidyl transferase d UTP nick end labeling method. MKP1 overexpression inhibited Aβ-induced JNK phosphorylation and the increase in ROS levels. It also suppressed the Aβ-induced increase in TNF-α and IL-1β levels as well as apoptosis in PC12 cells. In contrast, MKP1 knockdown by RNA interference aggravated Aβ-induced oxidative stress, inflammation and cell damage in PC12 cells. Furthermore, the JNK-specific inhibitor SP600125 abolished this effect of MKP1 knockdown on Aβ-induced neurotoxicity. Collectively, these results show that MKP1 mitigates Aβ-induced apoptosis, oxidative stress and neuroinflammation by inhibiting the JNK signaling pathway, thereby playing a neuroprotective role. 展开更多
关键词 nerve regeneration mitogen-activated protein kinase phosphatase 1 c-Jun N-terminal kinase signaling pathway Alzheimer's disease neurons DEMENTIA apoptosis RNA interference lentivirus inflammation oxidative stress neural regeneration
下载PDF
Mechanisms of extracellular signal-regulated kinase/cAMP response element-binding protein/brain-derived neurotrophic factor signal transduction pathway in depressive disorder 被引量:3
18
作者 Hongyan Wang Yingquan Zhang Mingqi Qiao 《Neural Regeneration Research》 SCIE CAS CSCD 2013年第9期843-852,共10页
The extracellular signal-regulated kinase/cAMP response element-binding protein/brain-derived neurotrophic factor signal transduction pathway plays an important role in the mechanism of action of antidepressant drugs ... The extracellular signal-regulated kinase/cAMP response element-binding protein/brain-derived neurotrophic factor signal transduction pathway plays an important role in the mechanism of action of antidepressant drugs and has dominated recent studies on the pathogenesis of depression. In the present review we summarize the known roles of extracellular signal-regulated kinase, cAMP response element-binding protein and brain-derived neurotrophic factor in the pathogenesis of depression and in the mechanism of action of antidepressant medicines. The extracellular signal-regulated kinase/cAMP response element-binding protein/brain-derived neurotrophic factor pathway has potential to be used as a biological index to help diagnose depression, and as such it is considered as an important new target in the treatment of depression. 展开更多
关键词 neural regeneration REVIEWS DEPRESSION mitogen-activated protein kinase extracellularsignal-regulated kinase cAMP response element-binding protein brain-derived neurotrophic factor 5-HYDROXYTRYPTAMINE grants-supported paper NEUROREGENERATION
下载PDF
Jiawei Wendan decoction affects mitogen-activated protein kinase signal pathway in the hippocampus of depression rats 被引量:2
19
作者 Liping Zhang Man Zhang +2 位作者 Li Wu Meng Xia Guangbin Li 《Neural Regeneration Research》 SCIE CAS CSCD 2011年第36期2805-2809,共5页
A previous study from our group showed that Jiawei Wendan decoction inhibits protein expression of interleukin-1β, 2, and 6, as well as plasma neuropeptide Y, P substance and somatostatin in the hippocampus of depres... A previous study from our group showed that Jiawei Wendan decoction inhibits protein expression of interleukin-1β, 2, and 6, as well as plasma neuropeptide Y, P substance and somatostatin in the hippocampus of depression rat models. The present study analyzed the influence of Jiawei Wendan decoction on the mitogen-activated protein kinase signal transduction pathway in the hippocampus. Results demonstrated that Jiawei Wendan decoction effectively upregulated expression of small molecular G proteins, extracellular regulated kinase 1/2, and activated ribosomal S6 kinase protein in the rat hippocampus. In addition, Jiawei Wendan decoction exhibits antidepressant effects similar to fluoxetine. The underlying mechanisms were shown to be dependent on increased mitogen-activated protein kinase signal transduction pathway activity. 展开更多
关键词 DEPRESSION hippocarn-pus mitogen-activated protein kinase pathway neural regeneration pathogenesis RATS SPLEEN STOMACH
下载PDF
Mitogen activated protein kinase signaling pathways participate in the active principle region of Buyang Huanwu decoction-induced differentiation of bone marrow mesenchymal stem cells 被引量:2
20
作者 Jinghui Zheng Jian Liang +6 位作者 Xin Deng Xiaofeng Chen Fasheng Wu Xiaofang Zhao Yuan Luo Lei Fu Zuling Jiang 《Neural Regeneration Research》 SCIE CAS CSCD 2012年第18期1370-1377,共8页
Our preliminary studies confirmed that an active principle region of Buyang Huanwu decoction, comprising alkaloid, polysaccharide, aglycon, glucoside and volatile oil, can induce bone marrow mesenchymal stem cell diff... Our preliminary studies confirmed that an active principle region of Buyang Huanwu decoction, comprising alkaloid, polysaccharide, aglycon, glucoside and volatile oil, can induce bone marrow mesenchymal stem cell differentiation into neurons. Mitogen-activated protein kinase signaling was identified as one of the key pathways underlying this differentiation process. The present study shows phosphorylated extracellular signal-regulated protein kinase and phosphorylated p38 protein expression was increased after differentiation. Cellular signaling pathway blocking agents, PD98059 and SB203580, inhibited extracellular signal-regulated protein kinase and p38 in mitogen-activated protein kinase signaling pathways respectively, mRNA and protein expression of the neuronal marker, neuron specific enolase, and neural stem cell marker, nestin, were decreased in bone marrow mesenchymal stem cells after treatment with the active principle region of Buyang Huanwu decoction. Experimental findings indicate that, extracellular signal-regulated protein kinase and p38 in mitogen-activated protein kinase signaling pathways participate in bone marrow mesenchymal stem cell differentiation into neuron-like cells, induced by the active principle region of Buyang Huanwu decoction. 展开更多
关键词 Buyang Huanwu decoction bone marrow mesenchymal stem ceils extracellular signal-regulatedprotein kinase mitogen-activated protein kinase signaling pathway neuron specific enolase NESTIN cell signal transduction pathway neural regeneration
下载PDF
上一页 1 2 159 下一页 到第
使用帮助 返回顶部