Neuronal growth, extension, branching, and formation of neural networks are markedly influenced by the extracellular matrix—a complex network composed of proteins and carbohydrates secreted by cells. In addition to p...Neuronal growth, extension, branching, and formation of neural networks are markedly influenced by the extracellular matrix—a complex network composed of proteins and carbohydrates secreted by cells. In addition to providing physical support for cells, the extracellular matrix also conveys critical mechanical stiffness cues. During the development of the nervous system, extracellular matrix stiffness plays a central role in guiding neuronal growth, particularly in the context of axonal extension, which is crucial for the formation of neural networks. In neural tissue engineering, manipulation of biomaterial stiffness is a promising strategy to provide a permissive environment for the repair and regeneration of injured nervous tissue. Recent research has fine-tuned synthetic biomaterials to fabricate scaffolds that closely replicate the stiffness profiles observed in the nervous system. In this review, we highlight the molecular mechanisms by which extracellular matrix stiffness regulates axonal growth and regeneration. We highlight the progress made in the development of stiffness-tunable biomaterials to emulate in vivo extracellular matrix environments, with an emphasis on their application in neural repair and regeneration, along with a discussion of the current limitations and future prospects. The exploration and optimization of the stiffness-tunable biomaterials has the potential to markedly advance the development of neural tissue engineering.展开更多
Ischemic stroke is a secondary cause of mortality worldwide,imposing considerable medical and economic burdens on society.Extracellular vesicles,serving as natural nanocarriers for drug delivery,exhibit excellent bioc...Ischemic stroke is a secondary cause of mortality worldwide,imposing considerable medical and economic burdens on society.Extracellular vesicles,serving as natural nanocarriers for drug delivery,exhibit excellent biocompatibility in vivo and have significant advantages in the management of ischemic stroke.However,the uncertain distribution and rapid clearance of extracellular vesicles impede their delivery efficiency.By utilizing membrane decoration or by encapsulating therapeutic cargo within extracellular vesicles,their delivery efficacy may be greatly improved.Furthermore,previous studies have indicated that microvesicles,a subset of large-sized extracellular vesicles,can transport mitochondria to neighboring cells,thereby aiding in the restoration of mitochondrial function post-ischemic stroke.Small extracellular vesicles have also demonstrated the capability to transfer mitochondrial components,such as proteins or deoxyribonucleic acid,or their sub-components,for extracellular vesicle-based ischemic stroke therapy.In this review,we undertake a comparative analysis of the isolation techniques employed for extracellular vesicles and present an overview of the current dominant extracellular vesicle modification methodologies.Given the complex facets of treating ischemic stroke,we also delineate various extracellular vesicle modification approaches which are suited to different facets of the treatment process.Moreover,given the burgeoning interest in mitochondrial delivery,we delved into the feasibility and existing research findings on the transportation of mitochondrial fractions or intact mitochondria through small extracellular vesicles and microvesicles to offer a fresh perspective on ischemic stroke therapy.展开更多
Axonal remodeling is a critical aspect of ischemic brain repair processes and contributes to spontaneous functional recovery.Our previous in vitro study demonstrated that exosomes/small extracellular vesicles(sEVs)iso...Axonal remodeling is a critical aspect of ischemic brain repair processes and contributes to spontaneous functional recovery.Our previous in vitro study demonstrated that exosomes/small extracellular vesicles(sEVs)isolated from cerebral endothelial cells(CEC-sEVs)of ischemic brain promote axonal growth of embryonic cortical neurons and that microRNA 27a(miR-27a)is an elevated miRNA in ischemic CEC-sEVs.In the present study,we investigated whether normal CEC-sEVs engineered to enrich their levels of miR-27a(27a-sEVs)further enhance axonal growth and improve neurological outcomes after ischemic stroke when compared with treatment with non-engineered CEC-sEVs.27a-sEVs were isolated from the conditioned medium of healthy mouse CECs transfected with a lentiviral miR-27a expression vector.Small EVs isolated from CECs transfected with a scramble vector(Scra-sEVs)were used as a control.Adult male mice were subjected to permanent middle cerebral artery occlusion and then were randomly treated with 27a-sEVs or Scra-sEVs.An array of behavior assays was used to measure neurological function.Compared with treatment of ischemic stroke with Scra-sEVs,treatment with 27a-sEVs significantly augmented axons and spines in the peri-infarct zone and in the corticospinal tract of the spinal grey matter of the denervated side,and significantly improved neurological outcomes.In vitro studies demonstrated that CEC-sEVs carrying reduced miR-27a abolished 27a-sEV-augmented axonal growth.Ultrastructural analysis revealed that 27a-sEVs systemically administered preferentially localized to the pre-synaptic active zone,while quantitative reverse transcription-polymerase chain reaction and Western Blot analysis showed elevated miR-27a,and reduced axonal inhibitory proteins Semaphorin 6A and Ras Homolog Family Member A in the peri-infarct zone.Blockage of the Clathrin-dependent endocytosis pathway substantially reduced neuronal internalization of 27a-sEVs.Our data provide evidence that 27a-sEVs have a therapeutic effect on stroke recovery by promoting axonal remodeling and improving neurological outcomes.Our findings also suggest that suppression of axonal inhibitory proteins such as Semaphorin 6A may contribute to the beneficial effect of 27a-sEVs on axonal remodeling.展开更多
Several studies have found that transplantation of neural progenitor cells(NPCs)promotes the survival of injured neurons.However,a poor integration rate and high risk of tumorigenicity after cell transplantation limit...Several studies have found that transplantation of neural progenitor cells(NPCs)promotes the survival of injured neurons.However,a poor integration rate and high risk of tumorigenicity after cell transplantation limits their clinical application.Small extracellular vesicles(sEVs)contain bioactive molecules for neuronal protection and regeneration.Previous studies have shown that stem/progenitor cell-derived sEVs can promote neuronal survival and recovery of neurological function in neurodegenerative eye diseases and other eye diseases.In this study,we intravitreally transplanted sEVs derived from human induced pluripotent stem cells(hiPSCs)and hiPSCs-differentiated NPCs(hiPSC-NPC)in a mouse model of optic nerve crush.Our results show that these intravitreally injected sEVs were ingested by retinal cells,especially those localized in the ganglion cell layer.Treatment with hiPSC-NPC-derived sEVs mitigated optic nerve crush-induced retinal ganglion cell degeneration,and regulated the retinal microenvironment by inhibiting excessive activation of microglia.Component analysis further revealed that hiPSC-NPC derived sEVs transported neuroprotective and anti-inflammatory miRNA cargos to target cells,which had protective effects on RGCs after optic nerve injury.These findings suggest that sEVs derived from hiPSC-NPC are a promising cell-free therapeutic strategy for optic neuropathy.展开更多
Recent advances in research on extracellular vesicles have significantly enhanced their potential as therapeutic agents for neurological diseases.Owing to their therapeutic properties and ability to cross the blood–b...Recent advances in research on extracellular vesicles have significantly enhanced their potential as therapeutic agents for neurological diseases.Owing to their therapeutic properties and ability to cross the blood–brain barrier,extracellular vesicles are recognized as promising drug delivery vehicles for various neurological conditions,including ischemic stroke,traumatic brain injury,neurodegenerative diseases,glioma,and psychosis.However,the clinical application of natural extracellular vesicles is hindered by their limited targeting ability and short clearance from the body.To address these limitations,multiple engineering strategies have been developed to enhance the targeting capabilities of extracellular vesicles,thereby enabling the delivery of therapeutic contents to specific tissues or cells.Therefore,this review aims to highlight the latest advancements in natural and targeting-engineered extracellular vesicles,exploring their applications in treating traumatic brain injury,ischemic stroke,Parkinson's disease,Alzheimer's disease,amyotrophic lateral sclerosis,glioma,and psychosis.Additionally,we summarized recent clinical trials involving extracellular vesicles and discussed the challenges and future prospects of using targeting-engineered extracellular vesicles for drug delivery in treating neurological diseases.This review offers new insights for developing highly targeted therapies in this field.展开更多
Our previous studies have reported that activation of the NLRP3(NOD-,LRR-and pyrin domain-containing protein 3)-inflammasome complex in ethanol-treated astrocytes and chronic alcohol-fed mice could be associated with ...Our previous studies have reported that activation of the NLRP3(NOD-,LRR-and pyrin domain-containing protein 3)-inflammasome complex in ethanol-treated astrocytes and chronic alcohol-fed mice could be associated with neuroinflammation and brain damage.Mesenchymal stem cell-derived extracellular vesicles(MSC-EVs)have been shown to restore the neuroinflammatory response,along with myelin and synaptic structural alterations in the prefrontal cortex,and alleviate cognitive and memory dysfunctions induced by binge-like ethanol treatment in adolescent mice.Considering the therapeutic role of the molecules contained in mesenchymal stem cell-derived extracellular vesicles,the present study analyzed whether the administration of mesenchymal stem cell-derived extracellular vesicles isolated from adipose tissue,which inhibited the activation of the NLRP3 inflammasome,was capable of reducing hippocampal neuroinflammation in adolescent mice treated with binge drinking.We demonstrated that the administration of mesenchymal stem cell-derived extracellular vesicles ameliorated the activation of the hippocampal NLRP3 inflammasome complex and other NLRs inflammasomes(e.g.,pyrin domain-containing 1,caspase recruitment domain-containing 4,and absent in melanoma 2,as well as the alterations in inflammatory genes(interleukin-1β,interleukin-18,inducible nitric oxide synthase,nuclear factor-kappa B,monocyte chemoattractant protein-1,and C–X3–C motif chemokine ligand 1)and miRNAs(miR-21a-5p,miR-146a-5p,and miR-141-5p)induced by binge-like ethanol treatment in adolescent mice.Bioinformatic analysis further revealed the involvement of miR-21a-5p and miR-146a-5p with inflammatory target genes and NOD-like receptor signaling pathways.Taken together,these findings provide novel evidence of the therapeutic potential of MSC-derived EVs to ameliorate the hippocampal neuroinflammatory response associated with NLRP3 inflammasome activation induced by binge drinking in adolescence.展开更多
Human neural stem cell-derived extracellular vesicles exhibit analogous functions to their parental cells,and can thus be used as substitutes for stem cells in stem cell therapy,thereby mitigating the risks of stem ce...Human neural stem cell-derived extracellular vesicles exhibit analogous functions to their parental cells,and can thus be used as substitutes for stem cells in stem cell therapy,thereby mitigating the risks of stem cell therapy and advancing the frontiers of stem cell-derived treatments.This lays a foundation for the development of potentially potent new treatment modalities for ischemic stroke.However,the precise mechanisms underlying the efficacy and safety of human neural stem cell-derived extracellular vesicles remain unclear,presenting challenges for clinical translation.To promote the translation of therapy based on human neural stem cell-derived extracellular vesicles from the bench to the bedside,we conducted a comprehensive preclinical study to evaluate the efficacy and safety of human neural stem cell-derived extracellular vesicles in the treatment of ischemic stroke.We found that administration of human neural stem cell-derived extracellular vesicles to an ischemic stroke rat model reduced the volume of cerebral infarction and promoted functional recovery by alleviating neuronal apoptosis.The human neural stem cell-derived extracellular vesicles reduced neuronal apoptosis by enhancing phosphorylation of phosphoinositide 3-kinase,mammalian target of rapamycin,and protein kinase B,and these effects were reversed by treatment with a phosphoinositide 3-kinase inhibitor.These findings suggest that human neural stem cell-derived extracellular vesicles play a neuroprotective role in ischemic stroke through activation of phosphoinositide 3-kinase/protein kinase B/mammalian target of rapamycin signaling pathway.Finally,we showed that human neural stem cell-derived extracellular vesicles have a good in vivo safety profile.Therefore,human neural stem cell-derived extracellular vesicles are a promising potential agent for the treatment of ischemic stroke.展开更多
Liquid biopsy is a technology that exhibits potential to detect cancer early,monitor therapies,and predict cancer prognosis due to its unique characteristics,including noninvasive sampling and real-time analysis.Circu...Liquid biopsy is a technology that exhibits potential to detect cancer early,monitor therapies,and predict cancer prognosis due to its unique characteristics,including noninvasive sampling and real-time analysis.Circulating tumor cells(CTCs)and extracellular vesicles(EVs)are two important components of circulating targets,carrying substantial disease-related molecular information and playing a key role in liquid biopsy.Aptamers are single-stranded oligonucleotides with superior affinity and specificity,and they can bind to targets by folding into unique tertiary structures.Aptamer-based microfluidic platforms offer new ways to enhance the purity and capture efficiency of CTCs and EVs by combining the advantages of microfluidic chips as isolation platforms and aptamers as recognition tools.In this review,we first briefly introduce some new strategies for aptamer discovery based on traditional and aptamer-based microfluidic approaches.Then,we subsequently summarize the progress of aptamer-based microfluidics for CTC and EV detection.Finally,we offer an outlook on the future directional challenges of aptamer-based microfluidics for circulating targets in clinical applications.展开更多
Extracellular vesicles are released by all cell types and contain proteins,microRNAs,mRNAs,and other bioactive molecules.Extracellular vesicles play an important role in intercellular communication and in the modulati...Extracellular vesicles are released by all cell types and contain proteins,microRNAs,mRNAs,and other bioactive molecules.Extracellular vesicles play an important role in intercellular communication and in the modulation of the immune system and neuroinflammation.The cargo of extra cellular vesicles(e.g.,proteins and microRNAs)is altered in pathological situations.Extracellular vesicles contribute to the pathogenesis of many pathologies associated with sustained inflammation and neuroinflammation,including cance r,diabetes,hype rammonemia and hepatic encephalopathy,and other neurological and neurodegenerative diseases.Extracellular vesicles may cross the blood-brain barrier and transfer pathological signals from the periphery to the brain.This contributes to inducing neuroinflammation and cognitive and motor impairment in hyperammonemia and hepatic encephalopathy and in neurodegenerative diseases.The mechanisms involved are beginning to be unde rstood.For example,increased tumor necrosis factor a in extracellular vesicles from plasma of hype rammonemic rats induces neuroinflammation and motor impairment when injected into normal rats.Identifying the mechanisms by which extracellular vesicles contribute to the pathogenesis of these diseases will help to develop new treatments and diagnostic tools for their easy and early detection.In contrast,extra cellular vesicles from mesenchymal stem cells have therapeutic utility in many of the above pathologies,by reducing inflammation and neuroinflammation and improving cognitive and motor function.These extra cellular vesicles recapitulate the beneficial effects of mesenchymal stem cells and have advantages as therapeutic tools:they are less immunoge nic,may not diffe rentiate to malignant cells,cross the blood-brain barrier,and may reach more easily target organs.Extracellular vesicles from mesenchymal stem cells have beneficial effects in models of ischemic brain injury,Alzheimer's and Parkinson's diseases,hyperammonemia,and hepatic encephalopathy.Extracellular vesicles from mesenchymal stem cells modulate the immune system,promoting the shift from a pro-inflammato ry to an anti-inflammatory state.For example,extracellular vesicles from mesenchymal stem cells modulate the Th17/Treg balance,promoting the anti-inflammatory Treg.Extracellular vesicles from mesenchymal stem cells may also act directly in the brain to modulate microglia activation,promoting a shift from a pro-inflammatory to an anti-inflammatory state.This reduces neuroinflammation and improves cognitive and motor function.Two main components of extracellular vesicles from mesenchymal stem cells which contribute to these beneficial effects are transforming growth factor-βand miR-124.Identifying the mechanisms by which extracellular vesicles from mesenchymal stem cells induce the beneficial effects and the main molecules(e.g.,proteins and mRNAs)involved may help to improve their therapeutic utility.The aims of this review are to summarize the knowledge of the pathological effects of extracellular vesicles in different pathologies,the therapeutic potential of extra cellular vesicles from mesenchymal stem cells to recover cognitive and motor function and the molecular mechanisms for these beneficial effects on neurological function.展开更多
Traumatic brain injury is a serious and complex neurological condition that affects millions of people worldwide.Despite significant advancements in the field of medicine,effective treatments for traumatic brain injur...Traumatic brain injury is a serious and complex neurological condition that affects millions of people worldwide.Despite significant advancements in the field of medicine,effective treatments for traumatic brain injury remain limited.Recently,extracellular vesicles released from mesenchymal stem/stromal cells have emerged as a promising novel therapy for traumatic brain injury.Extracellular vesicles are small membrane-bound vesicles that are naturally released by cells,including those in the brain,and can be engineered to contain therapeutic cargo,such as anti-inflammatory molecules,growth factors,and microRNAs.When administered intravenously,extra cellular vesicles can cross the blood-brain barrier and deliver their cargos to the site of injury,where they can be taken up by recipient cells and modulate the inflammatory response,promote neuroregeneration,and improve functional outcomes.In preclinical studies,extracellular vesicle-based therapies have shown promising results in promoting recove ry after traumatic brain injury,including reducing neuronal damage,improving cognitive function,and enhancing motor recovery.While further research is needed to establish the safety and efficacy of extra cellular vesicle-based therapies in humans,extra cellular vesicles represent a promising novel approach for the treatment of traumatic brain injury.In this review,we summarize mesenchymal ste m/stromal cell-de rived extracellular vesicles as a cell-free therapy for traumatic brain injury via neuroprotection and neurorestoration and brainderived extracellular vesicles as potential biofluid biomarkers in small and large animal models of traumatic brain injury.展开更多
Neutrophil extracellular traps are primarily composed of DNA and histones and are released by neutrophils to promote inflammation and thrombosis when stimulated by various inflammato ry reactions.Neutrophil extracellu...Neutrophil extracellular traps are primarily composed of DNA and histones and are released by neutrophils to promote inflammation and thrombosis when stimulated by various inflammato ry reactions.Neutrophil extracellular trap formation occurs through lytic and non-lytic pathways that can be further classified by formation mechanisms.Histones,von Willebrand factor,fibrin,and many other factors participate in the interplay between inflammation and thrombosis.Neuroimmunothrombosis summarizes the intricate interplay between inflammation and thrombosis during neural development and the pathogenesis of neurological diseases,providing cutting-edge insights into post-neurotrauma thrombotic events.The blood-brain barrier defends the brain and spinal cord against external assaults,and neutrophil extracellular trap involvement in blood-brain barrier disruption and immunothrombosis contributes substantially to secondary injuries in neurological diseases.Further research is needed to understand how neutrophil extracellular traps promote blood-brain barrier disruption and immunothrombosis,but recent studies have demonstrated that neutrophil extracellular traps play a crucial role in immunothrombosis,and identified modulators of neuro-immunothrombosis.However,these neurological diseases occur in blood vessels,and the mechanisms are unclear by which neutrophil extracellular traps penetrate the blood-brain barrier to participate in immunothrombosis in traumatic brain injury.This review discusses the role of neutrophil extracellular traps in neuro-immunothrombosis and explores potential therapeutic interventions to modulate neutrophil extracellular traps that may reduce immunothrombosis and improve traumatic brain injury outcomes.展开更多
Background: Ovarian follicular fluids(FFs) contain several kinds of regulatory factors that maintain a suitable micro-environment for oocyte development. Extracellular vesicles(EVs) are among the factors that play ess...Background: Ovarian follicular fluids(FFs) contain several kinds of regulatory factors that maintain a suitable micro-environment for oocyte development. Extracellular vesicles(EVs) are among the factors that play essential roles in regulating follicle and oocyte development through their cargo molecules that include microRNAs(miRNAs). This study aimed to investigate small-EV(s-EV) miRNAs in porcine FFs and their potential association with oocyte quality.Methods: Individual aspirated oocytes were stained with lissamine green B stain(LB), a vital stain for oocyte quality, and each oocyte was classified as high-quality(unstained;HQ) or low-quality(stained;LQ). FFs corresponding to oocytes were pooled together into HQ and LQ groups. Small-EVs were isolated from FFs, characterized, and their miRNA cargo was identified using the Illumina Nova Seq sequencing platform. Additionally, s-EVs from the HQ and LQ groups were utilized to investigate their effect on oocyte development after co-incubation during in vitro maturation.Results: A total of 19 miRNAs(including miR-125b, miR-193a-5p, and miR-320) were significantly upregulated, while 23(including miR-9, miR-206, and miR-6516) were downregulated in the HQ compared to the LQ group. Apoptosis, p53 signaling, and cAMP signaling were among the top pathways targeted by the elevated miRNAs in the HQ group while oocyte meiosis, gap junction, and TGF-beta signaling were among the top pathways targeted by the elevated miRNAs in the LQ group. The supplementation of small-EVs during maturation does not affect the oocyte developmental rates. However, LQ s-EVs increase the proportion of oocytes with homogeneous mitochondrial distribution and decrease the proportion of heterogeneous distribution.Conclusion: Our findings indicated that FF-EVs contain different miRNA cargos associated with oocyte quality and could affect the mitochondrial distribution patterns during oocyte maturation.展开更多
Skin wounds are characterized by injury to the skin due to trauma,tearing,cuts,or contusions.As such injuries are common to all human groups,they may at times represent a serious socioeconomic burden.Currently,increas...Skin wounds are characterized by injury to the skin due to trauma,tearing,cuts,or contusions.As such injuries are common to all human groups,they may at times represent a serious socioeconomic burden.Currently,increasing numbers of studies have focused on the role of mesenchymal stem cell(MSC)-derived extracellular vesicles(EVs)in skin wound repair.As a cell-free therapy,MSC-derived EVs have shown significant application potential in the field of wound repair as a more stable and safer option than conventional cell therapy.Treatment based on MSC-derived EVs can significantly promote the repair of damaged substructures,including the regeneration of vessels,nerves,and hair follicles.In addition,MSC-derived EVs can inhibit scar formation by affecting angiogenesis-related and antifibrotic pathways in promoting macrophage polarization,wound angiogenesis,cell proliferation,and cell migration,and by inhibiting excessive extracellular matrix production.Additionally,these structures can serve as a scaffold for components used in wound repair,and they can be developed into bioengineered EVs to support trauma repair.Through the formulation of standardized culture,isolation,purification,and drug delivery strategies,exploration of the detailed mechanism of EVs will allow them to be used as clinical treatments for wound repair.In conclusion,MSCderived EV-based therapies have important application prospects in wound repair.Here we provide a comprehensive overview of their current status,application potential,and associated drawbacks.展开更多
Spinal cord injury is a severe insult to the central nervous system that causes persisting neurological deficits.The currently available treatments involve surgical,medical,and rehabilitative strategies.However,none o...Spinal cord injury is a severe insult to the central nervous system that causes persisting neurological deficits.The currently available treatments involve surgical,medical,and rehabilitative strategies.However,none of these techniques can markedly reverse neurological deficits.Recently,extracellular vesicles from various cell sources have been applied to different models of spinal cord injury,thereby generating new cell-free therapies for the treatment of spinal cord injury.However,the use of extracellular vesicles alone is still associated with some notable shortcomings,such as their uncertainty in targeting damaged spinal cord tissues and inability to provide structural support to damaged axons.Therefore,this paper reviews the latest combined strategies for the use of extracellular vesicle-based technology for spinal cord injury,including the combination of extracellular vesicles with nanoparticles,exogenous drugs and/or biological scaffold materials,which facilitate the targeting ability of extracellular vesicles and the combinatorial effects with extracellular vesicles.We also highlight issues relating to the clinical transformation of these extracellular vesicle-based combination strategies for the treatment of spinal cord injury.展开更多
Traumatic brain injury is followed by a cascade of dynamic and complex events occurring at the cellular level. These events include: diffuse axonal injury, neuronal cell death, blood-brain barrier break down, glial ac...Traumatic brain injury is followed by a cascade of dynamic and complex events occurring at the cellular level. These events include: diffuse axonal injury, neuronal cell death, blood-brain barrier break down, glial activation and neuroinflammation, edema, ischemia, vascular injury, energy failure, and peripheral immune cell infiltration. The timing of these events post injury has been linked to injury severity and functional outcome. Extracellular vesicles are membrane bound secretory vesicles that contain markers and cargo pertaining to their cell of origin and can cross the blood-brain barrier. These qualities make extracellular vesicles intriguing candidates for a liquid biopsy into the pathophysiologic changes occurring at the cellular level post traumatic brain injury. Herein, we review the most commonly reported cargo changes in extracellular vesicles from clinical traumatic brain injury samples. We then use knowledge from animal and in vitro models to help infer what these changes may indicate regrading cellular responses post traumatic brain injury. Future research should prioritize labeling extracellular vesicles with markers for distinct cell types across a range of timepoints post traumatic brain injury.展开更多
AIM: To investigate changes in extracellular matrix(ECM) gene expression in human trabecular meshwork(HTM) cells in response to mechanical fluid flow stimulation.METHODS: HTM cells were grown on a glass plate coated w...AIM: To investigate changes in extracellular matrix(ECM) gene expression in human trabecular meshwork(HTM) cells in response to mechanical fluid flow stimulation.METHODS: HTM cells were grown on a glass plate coated with 0.02% type Ⅰ collagen(COL) and exposed to shear stress(0, 0.2, 1.0 dyne/cm;) for 12 h.Changes in genes related to the ECM were evaluated by real-time reverse transcriptase-polymerase chain reaction.Phosphorylation of Smad2 protein was investigated by Western blotting.RESULTS: After mechanical stimulation, COL type 4 alpha 2, COL type 6 alpha 1, and fibronectin-1 mRNA were significantly higher than the static control(P<0.05, <0.05, and <0.01, respectively).The metalloproteinase-2 and plasminogen activator inhibitor-1 mRNA were significantly higher than the static control(P<0.05 and <0.01, respectively), while the differences in the tissue inhibitors of metalloproteinases-2 mRNA were not significant.The phosphorylation of Smad2 levels was significantly higher compared to the static control cells.CONCLUSION: Changes in the expressions of genes associated ECM metabolism result in HTM cells after mechanical stimulation.The mechanical stimulation of the aqueous humor to the trabecular meshwork may promote ECM turnover and contribute to intraocular pressure homeostasis.展开更多
BACKGROUND Cartilage defects are some of the most common causes of arthritis.Cartilage lesions caused by inflammation,trauma or degenerative disease normally result in osteochondral defects.Previous studies have shown...BACKGROUND Cartilage defects are some of the most common causes of arthritis.Cartilage lesions caused by inflammation,trauma or degenerative disease normally result in osteochondral defects.Previous studies have shown that decellularized extracellular matrix(ECM)derived from autologous,allogenic,or xenogeneic mesenchymal stromal cells(MSCs)can effectively restore osteochondral integrity.AIM To determine whether the decellularized ECM of antler reserve mesenchymal cells(RMCs),a xenogeneic material from antler stem cells,is superior to the currently available treatments for osteochondral defects.METHODS We isolated the RMCs from a 60-d-old sika deer antler and cultured them in vitro to 70%confluence;50 mg/mL L-ascorbic acid was then added to the medium to stimulate ECM deposition.Decellularized sheets of adipocyte-derived MSCs(aMSCs)and antlerogenic periosteal cells(another type of antler stem cells)were used as the controls.Three weeks after ascorbic acid stimulation,the ECM sheets were harvested and applied to the osteochondral defects in rat knee joints.RESULTS The defects were successfully repaired by applying the ECM-sheets.The highest quality of repair was achieved in the RMC-ECM group both in vitro(including cell attachment and proliferation),and in vivo(including the simultaneous regeneration of well-vascularized subchondral bone and avascular articular hyaline cartilage integrated with surrounding native tissues).Notably,the antler-stem-cell-derived ECM(xenogeneic)performed better than the aMSC-ECM(allogenic),while the ECM of the active antler stem cells was superior to that of the quiescent antler stem cells.CONCLUSION Decellularized xenogeneic ECM derived from the antler stem cell,particularly the active form(RMC-ECM),can achieve high quality repair/reconstruction of osteochondral defects,suggesting that selection of decellularized ECM for such repair should be focused more on bioactivity rather than kinship.展开更多
Spinal cord injury is a disabling condition with limited treatment options.Multiple studies have provided evidence suggesting that small extracellular vesicles(SEVs)secreted by bone marrow mesenchymal stem cells(MSCs)...Spinal cord injury is a disabling condition with limited treatment options.Multiple studies have provided evidence suggesting that small extracellular vesicles(SEVs)secreted by bone marrow mesenchymal stem cells(MSCs)help mediate the beneficial effects conferred by MSC transplantation following spinal cord injury.Strikingly,hypoxia-preconditioned bone marrow mesenchymal stem cell-derived SEVs(HSEVs)exhibit increased therapeutic potency.We thus explored the role of HSEVs in macrophage immune regulation after spinal cord injury in rats and their significance in spinal cord repair.SEVs or HSEVs were isolated from bone marrow MSC supernatants by density gradient ultracentrifugation.HSEV administration to rats via tail vein injection after spinal cord injury reduced the lesion area and attenuated spinal cord inflammation.HSEVs regulate macrophage polarization towards the M2 phenotype in vivo and in vitro.Micro RNA sequencing and bioinformatics analyses of SEVs and HSEVs revealed that mi R-146a-5p is a potent mediator of macrophage polarization that targets interleukin-1 receptor-associated kinase 1.Reducing mi R-146a-5p expression in HSEVs partially attenuated macrophage polarization.Our data suggest that HSEVs attenuate spinal cord inflammation and injury in rats by transporting mi R-146a-5p,which alters macrophage polarization.This study provides new insights into the application of HSEVs as a therapeutic tool for spinal cord injury.展开更多
BACKGROUND MicroRNAs(miRNAs)regulate gene expression and play a critical role in cancer physiology.However,there is still a limited understanding of the function and regulatory mechanism of miRNAs in gastric cancer(GC...BACKGROUND MicroRNAs(miRNAs)regulate gene expression and play a critical role in cancer physiology.However,there is still a limited understanding of the function and regulatory mechanism of miRNAs in gastric cancer(GC).AIM To investigate the role and molecular mechanism of miRNA-145-5p(miR145-5p)in the progression of GC.METHODS Real-time polymerase chain reaction(RT-PCR)was used to detect miRNA expression in human GC tissues and cells.The ability of cancer cells to migrate and invade was assessed using wound-healing and transwell assays,respectively.Cell proliferation was measured using cell counting kit-8 and colony formation assays,and apoptosis was evaluated using flow cytometry.Expression of the epithelial-mesenchymal transition(EMT)-associated protein was determined by Western blot.Targets of miR-145-5p were predicated using bioinformatics analysis and verified using a dual-luciferase reporter system.Serpin family E member 1(SERPINE1)expression in GC tissues and cells was evaluated using RT-PCR and immunohistochemical staining.The correlation between SERPINE1 expression and overall patient survival was determined using Kaplan-Meier plot analysis.The association between SERPINE1 and GC progression was also tested.A rescue experiment of SERPINE1 overexpression was conducted to verify the relationship between this protein and miR-145-5p.The mechanism by which miR-145-5p influences GC progression was further explored by assessing tumor formation in nude mice.RESULTS GC tissues and cells had reduced miR-145-5p expression and SERPINE1 was identified as a direct target of this miRNA.Overexpression of miR-145-5p was associated with decreased GC cell proliferation,invasion,migration,and EMT,and these effects were reversed by forcing SERPINE1 expression.Kaplan-Meier plot analysis revealed that patients with higher SERPINE1 expression had a shorter survival rate than those with lower SERPINE1 expression.Nude mouse tumorigenesis experiments confirmed that miR-145-5p targets SERPINE1 to regulate extracellular signal-regulated kinase-1/2(ERK1/2).CONCLUSION This study found that miR-145-5p inhibits tumor progression and is expressed in lower amounts in patients with GC.MiR-145-5p was found to affect GC cell proliferation,migration,and invasion by negatively regulating SERPINE1 levels and controlling the ERK1/2 pathway.展开更多
Extracellular vesicles(EVs)are considered to be a new generation of bioinspired nanoscale drug delivery systems due to their low immunogenicity,natural functionality,and excellent biocompatibility.However,limitations ...Extracellular vesicles(EVs)are considered to be a new generation of bioinspired nanoscale drug delivery systems due to their low immunogenicity,natural functionality,and excellent biocompatibility.However,limitations such as low uptake efficiency,insufficient production,and inhomogeneous performance undermine their potential.To address these issues,numerous researchers have put forward various methods and applications for enhancing EV uptake in recent decades.In this review,we introduce various methods for the cellular uptake of EVs and summarize recent advances on the methods and mechanisms for enhancing EV uptake.In addition,we provide further understanding regarding enhancing EV uptake and put forward prospects and challenges for the development of EV-based therapy in the future.展开更多
基金supported by the Natio`nal Natural Science Foundation of China,No. 81801241a grant from Sichuan Science and Technology Program,No. 2023NSFSC1578Scientific Research Projects of Southwest Medical University,No. 2022ZD002 (all to JX)。
文摘Neuronal growth, extension, branching, and formation of neural networks are markedly influenced by the extracellular matrix—a complex network composed of proteins and carbohydrates secreted by cells. In addition to providing physical support for cells, the extracellular matrix also conveys critical mechanical stiffness cues. During the development of the nervous system, extracellular matrix stiffness plays a central role in guiding neuronal growth, particularly in the context of axonal extension, which is crucial for the formation of neural networks. In neural tissue engineering, manipulation of biomaterial stiffness is a promising strategy to provide a permissive environment for the repair and regeneration of injured nervous tissue. Recent research has fine-tuned synthetic biomaterials to fabricate scaffolds that closely replicate the stiffness profiles observed in the nervous system. In this review, we highlight the molecular mechanisms by which extracellular matrix stiffness regulates axonal growth and regeneration. We highlight the progress made in the development of stiffness-tunable biomaterials to emulate in vivo extracellular matrix environments, with an emphasis on their application in neural repair and regeneration, along with a discussion of the current limitations and future prospects. The exploration and optimization of the stiffness-tunable biomaterials has the potential to markedly advance the development of neural tissue engineering.
基金supported by the grants from University of Macao,China,Nos.MYRG2022-00221-ICMS(to YZ)and MYRG-CRG2022-00011-ICMS(to RW)the Natural Science Foundation of Guangdong Province,No.2023A1515010034(to YZ)。
文摘Ischemic stroke is a secondary cause of mortality worldwide,imposing considerable medical and economic burdens on society.Extracellular vesicles,serving as natural nanocarriers for drug delivery,exhibit excellent biocompatibility in vivo and have significant advantages in the management of ischemic stroke.However,the uncertain distribution and rapid clearance of extracellular vesicles impede their delivery efficiency.By utilizing membrane decoration or by encapsulating therapeutic cargo within extracellular vesicles,their delivery efficacy may be greatly improved.Furthermore,previous studies have indicated that microvesicles,a subset of large-sized extracellular vesicles,can transport mitochondria to neighboring cells,thereby aiding in the restoration of mitochondrial function post-ischemic stroke.Small extracellular vesicles have also demonstrated the capability to transfer mitochondrial components,such as proteins or deoxyribonucleic acid,or their sub-components,for extracellular vesicle-based ischemic stroke therapy.In this review,we undertake a comparative analysis of the isolation techniques employed for extracellular vesicles and present an overview of the current dominant extracellular vesicle modification methodologies.Given the complex facets of treating ischemic stroke,we also delineate various extracellular vesicle modification approaches which are suited to different facets of the treatment process.Moreover,given the burgeoning interest in mitochondrial delivery,we delved into the feasibility and existing research findings on the transportation of mitochondrial fractions or intact mitochondria through small extracellular vesicles and microvesicles to offer a fresh perspective on ischemic stroke therapy.
基金supported by the NIH grants,R01 NS111801(to ZGZ)American Heart Association 16SDG29860003(to YZ)。
文摘Axonal remodeling is a critical aspect of ischemic brain repair processes and contributes to spontaneous functional recovery.Our previous in vitro study demonstrated that exosomes/small extracellular vesicles(sEVs)isolated from cerebral endothelial cells(CEC-sEVs)of ischemic brain promote axonal growth of embryonic cortical neurons and that microRNA 27a(miR-27a)is an elevated miRNA in ischemic CEC-sEVs.In the present study,we investigated whether normal CEC-sEVs engineered to enrich their levels of miR-27a(27a-sEVs)further enhance axonal growth and improve neurological outcomes after ischemic stroke when compared with treatment with non-engineered CEC-sEVs.27a-sEVs were isolated from the conditioned medium of healthy mouse CECs transfected with a lentiviral miR-27a expression vector.Small EVs isolated from CECs transfected with a scramble vector(Scra-sEVs)were used as a control.Adult male mice were subjected to permanent middle cerebral artery occlusion and then were randomly treated with 27a-sEVs or Scra-sEVs.An array of behavior assays was used to measure neurological function.Compared with treatment of ischemic stroke with Scra-sEVs,treatment with 27a-sEVs significantly augmented axons and spines in the peri-infarct zone and in the corticospinal tract of the spinal grey matter of the denervated side,and significantly improved neurological outcomes.In vitro studies demonstrated that CEC-sEVs carrying reduced miR-27a abolished 27a-sEV-augmented axonal growth.Ultrastructural analysis revealed that 27a-sEVs systemically administered preferentially localized to the pre-synaptic active zone,while quantitative reverse transcription-polymerase chain reaction and Western Blot analysis showed elevated miR-27a,and reduced axonal inhibitory proteins Semaphorin 6A and Ras Homolog Family Member A in the peri-infarct zone.Blockage of the Clathrin-dependent endocytosis pathway substantially reduced neuronal internalization of 27a-sEVs.Our data provide evidence that 27a-sEVs have a therapeutic effect on stroke recovery by promoting axonal remodeling and improving neurological outcomes.Our findings also suggest that suppression of axonal inhibitory proteins such as Semaphorin 6A may contribute to the beneficial effect of 27a-sEVs on axonal remodeling.
基金supported by the National Natural Science Foundation of China,No.82271114the Natural Science Foundation of Zhejiang Province of China,No.LZ22H120001(both to ZLC).
文摘Several studies have found that transplantation of neural progenitor cells(NPCs)promotes the survival of injured neurons.However,a poor integration rate and high risk of tumorigenicity after cell transplantation limits their clinical application.Small extracellular vesicles(sEVs)contain bioactive molecules for neuronal protection and regeneration.Previous studies have shown that stem/progenitor cell-derived sEVs can promote neuronal survival and recovery of neurological function in neurodegenerative eye diseases and other eye diseases.In this study,we intravitreally transplanted sEVs derived from human induced pluripotent stem cells(hiPSCs)and hiPSCs-differentiated NPCs(hiPSC-NPC)in a mouse model of optic nerve crush.Our results show that these intravitreally injected sEVs were ingested by retinal cells,especially those localized in the ganglion cell layer.Treatment with hiPSC-NPC-derived sEVs mitigated optic nerve crush-induced retinal ganglion cell degeneration,and regulated the retinal microenvironment by inhibiting excessive activation of microglia.Component analysis further revealed that hiPSC-NPC derived sEVs transported neuroprotective and anti-inflammatory miRNA cargos to target cells,which had protective effects on RGCs after optic nerve injury.These findings suggest that sEVs derived from hiPSC-NPC are a promising cell-free therapeutic strategy for optic neuropathy.
基金supported by the National Natural Science Foundation of China,Nos.82171363,82371381(to PL),82171458(to XJ)Key Research and Development Project of Shaa nxi Province,Nos.2024SF-YBXM-404(to KY)。
文摘Recent advances in research on extracellular vesicles have significantly enhanced their potential as therapeutic agents for neurological diseases.Owing to their therapeutic properties and ability to cross the blood–brain barrier,extracellular vesicles are recognized as promising drug delivery vehicles for various neurological conditions,including ischemic stroke,traumatic brain injury,neurodegenerative diseases,glioma,and psychosis.However,the clinical application of natural extracellular vesicles is hindered by their limited targeting ability and short clearance from the body.To address these limitations,multiple engineering strategies have been developed to enhance the targeting capabilities of extracellular vesicles,thereby enabling the delivery of therapeutic contents to specific tissues or cells.Therefore,this review aims to highlight the latest advancements in natural and targeting-engineered extracellular vesicles,exploring their applications in treating traumatic brain injury,ischemic stroke,Parkinson's disease,Alzheimer's disease,amyotrophic lateral sclerosis,glioma,and psychosis.Additionally,we summarized recent clinical trials involving extracellular vesicles and discussed the challenges and future prospects of using targeting-engineered extracellular vesicles for drug delivery in treating neurological diseases.This review offers new insights for developing highly targeted therapies in this field.
基金supported by grants from the Spanish Ministry of Health-PNSD(2019-I039 and 2023-I024)(to MP)FEDER/Ministerio de Ciencia e Innovación-Agencia Estatal de Investigación PID2021-1243590B-I100(to VMM)+2 种基金GVA(CIAICO/2021/203)(to MP)the Primary Addiction Care Research Network(RD21/0009/0005)(to MP)a predoctoral fellowship from the Generalitat Valenciana(ACIF/2021/338)(to CPC).
文摘Our previous studies have reported that activation of the NLRP3(NOD-,LRR-and pyrin domain-containing protein 3)-inflammasome complex in ethanol-treated astrocytes and chronic alcohol-fed mice could be associated with neuroinflammation and brain damage.Mesenchymal stem cell-derived extracellular vesicles(MSC-EVs)have been shown to restore the neuroinflammatory response,along with myelin and synaptic structural alterations in the prefrontal cortex,and alleviate cognitive and memory dysfunctions induced by binge-like ethanol treatment in adolescent mice.Considering the therapeutic role of the molecules contained in mesenchymal stem cell-derived extracellular vesicles,the present study analyzed whether the administration of mesenchymal stem cell-derived extracellular vesicles isolated from adipose tissue,which inhibited the activation of the NLRP3 inflammasome,was capable of reducing hippocampal neuroinflammation in adolescent mice treated with binge drinking.We demonstrated that the administration of mesenchymal stem cell-derived extracellular vesicles ameliorated the activation of the hippocampal NLRP3 inflammasome complex and other NLRs inflammasomes(e.g.,pyrin domain-containing 1,caspase recruitment domain-containing 4,and absent in melanoma 2,as well as the alterations in inflammatory genes(interleukin-1β,interleukin-18,inducible nitric oxide synthase,nuclear factor-kappa B,monocyte chemoattractant protein-1,and C–X3–C motif chemokine ligand 1)and miRNAs(miR-21a-5p,miR-146a-5p,and miR-141-5p)induced by binge-like ethanol treatment in adolescent mice.Bioinformatic analysis further revealed the involvement of miR-21a-5p and miR-146a-5p with inflammatory target genes and NOD-like receptor signaling pathways.Taken together,these findings provide novel evidence of the therapeutic potential of MSC-derived EVs to ameliorate the hippocampal neuroinflammatory response associated with NLRP3 inflammasome activation induced by binge drinking in adolescence.
基金supported by the National Nature Science Foundation of China,No.81471308(to JL)the Innovative Leading Talents of Liaoning Province,No.XLYC1902031(to JL)+2 种基金Science and Technology Projects in Liaoning Province,No.2022-BS-238(to CH)Young Top Talents of Liaoning Province,No.XLYC1907009(to LW)Dalian Science and Technology Innovation Fund,No.2018J11CY025(to JL)。
文摘Human neural stem cell-derived extracellular vesicles exhibit analogous functions to their parental cells,and can thus be used as substitutes for stem cells in stem cell therapy,thereby mitigating the risks of stem cell therapy and advancing the frontiers of stem cell-derived treatments.This lays a foundation for the development of potentially potent new treatment modalities for ischemic stroke.However,the precise mechanisms underlying the efficacy and safety of human neural stem cell-derived extracellular vesicles remain unclear,presenting challenges for clinical translation.To promote the translation of therapy based on human neural stem cell-derived extracellular vesicles from the bench to the bedside,we conducted a comprehensive preclinical study to evaluate the efficacy and safety of human neural stem cell-derived extracellular vesicles in the treatment of ischemic stroke.We found that administration of human neural stem cell-derived extracellular vesicles to an ischemic stroke rat model reduced the volume of cerebral infarction and promoted functional recovery by alleviating neuronal apoptosis.The human neural stem cell-derived extracellular vesicles reduced neuronal apoptosis by enhancing phosphorylation of phosphoinositide 3-kinase,mammalian target of rapamycin,and protein kinase B,and these effects were reversed by treatment with a phosphoinositide 3-kinase inhibitor.These findings suggest that human neural stem cell-derived extracellular vesicles play a neuroprotective role in ischemic stroke through activation of phosphoinositide 3-kinase/protein kinase B/mammalian target of rapamycin signaling pathway.Finally,we showed that human neural stem cell-derived extracellular vesicles have a good in vivo safety profile.Therefore,human neural stem cell-derived extracellular vesicles are a promising potential agent for the treatment of ischemic stroke.
基金This work was supported by the National Natural Science Foundation of China(Grant Nos.:82003710 and 82173808)the Natural Science Foundation of Guangdong Province(Grant Nos.:2020A1515010075 and 2021B1515020100)+3 种基金the Project of Educational Commission of Guangdong Province(Grant No.:2021ZDZX2012)the Guangzhou Basic and Applied Basic Research Project(Grant No.:2023A04J1163)the National Key Clinical Specialty Construction Project(Clinical Pharmacy)High-Level Clinical Key Specialty(Clinical Pharmacy)in Guangdong Province,China.
文摘Liquid biopsy is a technology that exhibits potential to detect cancer early,monitor therapies,and predict cancer prognosis due to its unique characteristics,including noninvasive sampling and real-time analysis.Circulating tumor cells(CTCs)and extracellular vesicles(EVs)are two important components of circulating targets,carrying substantial disease-related molecular information and playing a key role in liquid biopsy.Aptamers are single-stranded oligonucleotides with superior affinity and specificity,and they can bind to targets by folding into unique tertiary structures.Aptamer-based microfluidic platforms offer new ways to enhance the purity and capture efficiency of CTCs and EVs by combining the advantages of microfluidic chips as isolation platforms and aptamers as recognition tools.In this review,we first briefly introduce some new strategies for aptamer discovery based on traditional and aptamer-based microfluidic approaches.Then,we subsequently summarize the progress of aptamer-based microfluidics for CTC and EV detection.Finally,we offer an outlook on the future directional challenges of aptamer-based microfluidics for circulating targets in clinical applications.
基金supported in part by the Ministerio de Ciencia e Innovacion Spain(PID2020-113388RB-I00 to VF and PID2021-124359OB-100 to VMM)Conselleria Educacion Generalitat Valenciana(CIPROM/2021/082 to VF)co-funded with European Regional Development Funds(ERDF)to VF and VMM。
文摘Extracellular vesicles are released by all cell types and contain proteins,microRNAs,mRNAs,and other bioactive molecules.Extracellular vesicles play an important role in intercellular communication and in the modulation of the immune system and neuroinflammation.The cargo of extra cellular vesicles(e.g.,proteins and microRNAs)is altered in pathological situations.Extracellular vesicles contribute to the pathogenesis of many pathologies associated with sustained inflammation and neuroinflammation,including cance r,diabetes,hype rammonemia and hepatic encephalopathy,and other neurological and neurodegenerative diseases.Extracellular vesicles may cross the blood-brain barrier and transfer pathological signals from the periphery to the brain.This contributes to inducing neuroinflammation and cognitive and motor impairment in hyperammonemia and hepatic encephalopathy and in neurodegenerative diseases.The mechanisms involved are beginning to be unde rstood.For example,increased tumor necrosis factor a in extracellular vesicles from plasma of hype rammonemic rats induces neuroinflammation and motor impairment when injected into normal rats.Identifying the mechanisms by which extracellular vesicles contribute to the pathogenesis of these diseases will help to develop new treatments and diagnostic tools for their easy and early detection.In contrast,extra cellular vesicles from mesenchymal stem cells have therapeutic utility in many of the above pathologies,by reducing inflammation and neuroinflammation and improving cognitive and motor function.These extra cellular vesicles recapitulate the beneficial effects of mesenchymal stem cells and have advantages as therapeutic tools:they are less immunoge nic,may not diffe rentiate to malignant cells,cross the blood-brain barrier,and may reach more easily target organs.Extracellular vesicles from mesenchymal stem cells have beneficial effects in models of ischemic brain injury,Alzheimer's and Parkinson's diseases,hyperammonemia,and hepatic encephalopathy.Extracellular vesicles from mesenchymal stem cells modulate the immune system,promoting the shift from a pro-inflammato ry to an anti-inflammatory state.For example,extracellular vesicles from mesenchymal stem cells modulate the Th17/Treg balance,promoting the anti-inflammatory Treg.Extracellular vesicles from mesenchymal stem cells may also act directly in the brain to modulate microglia activation,promoting a shift from a pro-inflammatory to an anti-inflammatory state.This reduces neuroinflammation and improves cognitive and motor function.Two main components of extracellular vesicles from mesenchymal stem cells which contribute to these beneficial effects are transforming growth factor-βand miR-124.Identifying the mechanisms by which extracellular vesicles from mesenchymal stem cells induce the beneficial effects and the main molecules(e.g.,proteins and mRNAs)involved may help to improve their therapeutic utility.The aims of this review are to summarize the knowledge of the pathological effects of extracellular vesicles in different pathologies,the therapeutic potential of extra cellular vesicles from mesenchymal stem cells to recover cognitive and motor function and the molecular mechanisms for these beneficial effects on neurological function.
基金supported by Notional Institutes of Health Grant,No.1R01NS100710-01A1(to YX)。
文摘Traumatic brain injury is a serious and complex neurological condition that affects millions of people worldwide.Despite significant advancements in the field of medicine,effective treatments for traumatic brain injury remain limited.Recently,extracellular vesicles released from mesenchymal stem/stromal cells have emerged as a promising novel therapy for traumatic brain injury.Extracellular vesicles are small membrane-bound vesicles that are naturally released by cells,including those in the brain,and can be engineered to contain therapeutic cargo,such as anti-inflammatory molecules,growth factors,and microRNAs.When administered intravenously,extra cellular vesicles can cross the blood-brain barrier and deliver their cargos to the site of injury,where they can be taken up by recipient cells and modulate the inflammatory response,promote neuroregeneration,and improve functional outcomes.In preclinical studies,extracellular vesicle-based therapies have shown promising results in promoting recove ry after traumatic brain injury,including reducing neuronal damage,improving cognitive function,and enhancing motor recovery.While further research is needed to establish the safety and efficacy of extra cellular vesicle-based therapies in humans,extra cellular vesicles represent a promising novel approach for the treatment of traumatic brain injury.In this review,we summarize mesenchymal ste m/stromal cell-de rived extracellular vesicles as a cell-free therapy for traumatic brain injury via neuroprotection and neurorestoration and brainderived extracellular vesicles as potential biofluid biomarkers in small and large animal models of traumatic brain injury.
基金supported by the National Natural Science Foundation of China,No.82271399(to XC)the Project of Tianjin Applied Basic and Multiple Support Research,No.21JCZDJC00910(to XC)+4 种基金the Scientific Research Program of Tianjin Education Commission(Natural Science)of China,No.2019ZD034(to QD)the Science&Technology Program of Tianjin for Cultivation of Innovative Talents,No.22JRRCRC00020(to QD)the Tianjin Medical University"Clinical Talent Training 123 Climbing Plan"(to XC)the Tianjin Health Care Elite Prominent Young Doctor Development Program(to XC)the Young and Middle-aged Backbone Innovative Talent Program(to XC)。
文摘Neutrophil extracellular traps are primarily composed of DNA and histones and are released by neutrophils to promote inflammation and thrombosis when stimulated by various inflammato ry reactions.Neutrophil extracellular trap formation occurs through lytic and non-lytic pathways that can be further classified by formation mechanisms.Histones,von Willebrand factor,fibrin,and many other factors participate in the interplay between inflammation and thrombosis.Neuroimmunothrombosis summarizes the intricate interplay between inflammation and thrombosis during neural development and the pathogenesis of neurological diseases,providing cutting-edge insights into post-neurotrauma thrombotic events.The blood-brain barrier defends the brain and spinal cord against external assaults,and neutrophil extracellular trap involvement in blood-brain barrier disruption and immunothrombosis contributes substantially to secondary injuries in neurological diseases.Further research is needed to understand how neutrophil extracellular traps promote blood-brain barrier disruption and immunothrombosis,but recent studies have demonstrated that neutrophil extracellular traps play a crucial role in immunothrombosis,and identified modulators of neuro-immunothrombosis.However,these neurological diseases occur in blood vessels,and the mechanisms are unclear by which neutrophil extracellular traps penetrate the blood-brain barrier to participate in immunothrombosis in traumatic brain injury.This review discusses the role of neutrophil extracellular traps in neuro-immunothrombosis and explores potential therapeutic interventions to modulate neutrophil extracellular traps that may reduce immunothrombosis and improve traumatic brain injury outcomes.
基金supported by the Institute of Animal Physiology and Genetics“IAPG-Matoušek Award 2020”Grant number:DRMA-2020-0002the Ministry of Education,Youth and Sports of the Czech Republic,Operational Program Research,Development and Education,the project“EXCELLENCE in molecular aspects of the early development of vertebrates”Grant number:CZ.02.1.01/0.0/0.0/15_003/0000460.
文摘Background: Ovarian follicular fluids(FFs) contain several kinds of regulatory factors that maintain a suitable micro-environment for oocyte development. Extracellular vesicles(EVs) are among the factors that play essential roles in regulating follicle and oocyte development through their cargo molecules that include microRNAs(miRNAs). This study aimed to investigate small-EV(s-EV) miRNAs in porcine FFs and their potential association with oocyte quality.Methods: Individual aspirated oocytes were stained with lissamine green B stain(LB), a vital stain for oocyte quality, and each oocyte was classified as high-quality(unstained;HQ) or low-quality(stained;LQ). FFs corresponding to oocytes were pooled together into HQ and LQ groups. Small-EVs were isolated from FFs, characterized, and their miRNA cargo was identified using the Illumina Nova Seq sequencing platform. Additionally, s-EVs from the HQ and LQ groups were utilized to investigate their effect on oocyte development after co-incubation during in vitro maturation.Results: A total of 19 miRNAs(including miR-125b, miR-193a-5p, and miR-320) were significantly upregulated, while 23(including miR-9, miR-206, and miR-6516) were downregulated in the HQ compared to the LQ group. Apoptosis, p53 signaling, and cAMP signaling were among the top pathways targeted by the elevated miRNAs in the HQ group while oocyte meiosis, gap junction, and TGF-beta signaling were among the top pathways targeted by the elevated miRNAs in the LQ group. The supplementation of small-EVs during maturation does not affect the oocyte developmental rates. However, LQ s-EVs increase the proportion of oocytes with homogeneous mitochondrial distribution and decrease the proportion of heterogeneous distribution.Conclusion: Our findings indicated that FF-EVs contain different miRNA cargos associated with oocyte quality and could affect the mitochondrial distribution patterns during oocyte maturation.
基金supported by the National Key Research and Development Project Intergovernmental Cooperation in Science and Technology of China(2018YFE0126900)the Key R&D Program of Lishui City(2021ZDYF12)the National Natural Science Foundation of China(82271629)。
文摘Skin wounds are characterized by injury to the skin due to trauma,tearing,cuts,or contusions.As such injuries are common to all human groups,they may at times represent a serious socioeconomic burden.Currently,increasing numbers of studies have focused on the role of mesenchymal stem cell(MSC)-derived extracellular vesicles(EVs)in skin wound repair.As a cell-free therapy,MSC-derived EVs have shown significant application potential in the field of wound repair as a more stable and safer option than conventional cell therapy.Treatment based on MSC-derived EVs can significantly promote the repair of damaged substructures,including the regeneration of vessels,nerves,and hair follicles.In addition,MSC-derived EVs can inhibit scar formation by affecting angiogenesis-related and antifibrotic pathways in promoting macrophage polarization,wound angiogenesis,cell proliferation,and cell migration,and by inhibiting excessive extracellular matrix production.Additionally,these structures can serve as a scaffold for components used in wound repair,and they can be developed into bioengineered EVs to support trauma repair.Through the formulation of standardized culture,isolation,purification,and drug delivery strategies,exploration of the detailed mechanism of EVs will allow them to be used as clinical treatments for wound repair.In conclusion,MSCderived EV-based therapies have important application prospects in wound repair.Here we provide a comprehensive overview of their current status,application potential,and associated drawbacks.
基金supported by the 2020 Li Ka Shing Foundation Cross-Disciplinary Research Grant,No.2020LKSFG02C(to Qiang Fang and SG)the National Natural Science Foundation of China,No.82201511(to SG)+1 种基金the Guangdong Basic and Applied Basic Research Foundation,Nos.2021A1515110873(to SG),2022A1515110139(to TW)the Medical Scientific Research Foundation of Guangdong Province,No.A2022077(to SG)。
文摘Spinal cord injury is a severe insult to the central nervous system that causes persisting neurological deficits.The currently available treatments involve surgical,medical,and rehabilitative strategies.However,none of these techniques can markedly reverse neurological deficits.Recently,extracellular vesicles from various cell sources have been applied to different models of spinal cord injury,thereby generating new cell-free therapies for the treatment of spinal cord injury.However,the use of extracellular vesicles alone is still associated with some notable shortcomings,such as their uncertainty in targeting damaged spinal cord tissues and inability to provide structural support to damaged axons.Therefore,this paper reviews the latest combined strategies for the use of extracellular vesicle-based technology for spinal cord injury,including the combination of extracellular vesicles with nanoparticles,exogenous drugs and/or biological scaffold materials,which facilitate the targeting ability of extracellular vesicles and the combinatorial effects with extracellular vesicles.We also highlight issues relating to the clinical transformation of these extracellular vesicle-based combination strategies for the treatment of spinal cord injury.
基金supported by Canadian Institutes for Health Research (CIHR)(to ADR and WW)Ontario Graduate Scholarship (to NOB)+2 种基金Alzheimer's Society of CanadaHeart and Stroke Foundation of Canada,CIHRthe Canadian Consortium for Neurodegeneration and Aging (CCNA)(to SNW)。
文摘Traumatic brain injury is followed by a cascade of dynamic and complex events occurring at the cellular level. These events include: diffuse axonal injury, neuronal cell death, blood-brain barrier break down, glial activation and neuroinflammation, edema, ischemia, vascular injury, energy failure, and peripheral immune cell infiltration. The timing of these events post injury has been linked to injury severity and functional outcome. Extracellular vesicles are membrane bound secretory vesicles that contain markers and cargo pertaining to their cell of origin and can cross the blood-brain barrier. These qualities make extracellular vesicles intriguing candidates for a liquid biopsy into the pathophysiologic changes occurring at the cellular level post traumatic brain injury. Herein, we review the most commonly reported cargo changes in extracellular vesicles from clinical traumatic brain injury samples. We then use knowledge from animal and in vitro models to help infer what these changes may indicate regrading cellular responses post traumatic brain injury. Future research should prioritize labeling extracellular vesicles with markers for distinct cell types across a range of timepoints post traumatic brain injury.
基金Supported by JSPS KAKENHI (No.15K10857No.17H00695No.19K18865)。
文摘AIM: To investigate changes in extracellular matrix(ECM) gene expression in human trabecular meshwork(HTM) cells in response to mechanical fluid flow stimulation.METHODS: HTM cells were grown on a glass plate coated with 0.02% type Ⅰ collagen(COL) and exposed to shear stress(0, 0.2, 1.0 dyne/cm;) for 12 h.Changes in genes related to the ECM were evaluated by real-time reverse transcriptase-polymerase chain reaction.Phosphorylation of Smad2 protein was investigated by Western blotting.RESULTS: After mechanical stimulation, COL type 4 alpha 2, COL type 6 alpha 1, and fibronectin-1 mRNA were significantly higher than the static control(P<0.05, <0.05, and <0.01, respectively).The metalloproteinase-2 and plasminogen activator inhibitor-1 mRNA were significantly higher than the static control(P<0.05 and <0.01, respectively), while the differences in the tissue inhibitors of metalloproteinases-2 mRNA were not significant.The phosphorylation of Smad2 levels was significantly higher compared to the static control cells.CONCLUSION: Changes in the expressions of genes associated ECM metabolism result in HTM cells after mechanical stimulation.The mechanical stimulation of the aqueous humor to the trabecular meshwork may promote ECM turnover and contribute to intraocular pressure homeostasis.
基金National Natural Science Foundation of China,No.U20A20403This study was conducted in accordance with the Animal Ethics Committee of the Institute of Antler Science and Product Technology,Changchun Sci-Tech University(AEC No:CKARI202309).
文摘BACKGROUND Cartilage defects are some of the most common causes of arthritis.Cartilage lesions caused by inflammation,trauma or degenerative disease normally result in osteochondral defects.Previous studies have shown that decellularized extracellular matrix(ECM)derived from autologous,allogenic,or xenogeneic mesenchymal stromal cells(MSCs)can effectively restore osteochondral integrity.AIM To determine whether the decellularized ECM of antler reserve mesenchymal cells(RMCs),a xenogeneic material from antler stem cells,is superior to the currently available treatments for osteochondral defects.METHODS We isolated the RMCs from a 60-d-old sika deer antler and cultured them in vitro to 70%confluence;50 mg/mL L-ascorbic acid was then added to the medium to stimulate ECM deposition.Decellularized sheets of adipocyte-derived MSCs(aMSCs)and antlerogenic periosteal cells(another type of antler stem cells)were used as the controls.Three weeks after ascorbic acid stimulation,the ECM sheets were harvested and applied to the osteochondral defects in rat knee joints.RESULTS The defects were successfully repaired by applying the ECM-sheets.The highest quality of repair was achieved in the RMC-ECM group both in vitro(including cell attachment and proliferation),and in vivo(including the simultaneous regeneration of well-vascularized subchondral bone and avascular articular hyaline cartilage integrated with surrounding native tissues).Notably,the antler-stem-cell-derived ECM(xenogeneic)performed better than the aMSC-ECM(allogenic),while the ECM of the active antler stem cells was superior to that of the quiescent antler stem cells.CONCLUSION Decellularized xenogeneic ECM derived from the antler stem cell,particularly the active form(RMC-ECM),can achieve high quality repair/reconstruction of osteochondral defects,suggesting that selection of decellularized ECM for such repair should be focused more on bioactivity rather than kinship.
基金supported by the Fujian Minimally Invasive Medical Center Foundation,No.2128100514(to CC,CW,HX)the Natural Science Foundation of Fujian Province,No.2023J01640(to CC,CW,ZL,HX)。
文摘Spinal cord injury is a disabling condition with limited treatment options.Multiple studies have provided evidence suggesting that small extracellular vesicles(SEVs)secreted by bone marrow mesenchymal stem cells(MSCs)help mediate the beneficial effects conferred by MSC transplantation following spinal cord injury.Strikingly,hypoxia-preconditioned bone marrow mesenchymal stem cell-derived SEVs(HSEVs)exhibit increased therapeutic potency.We thus explored the role of HSEVs in macrophage immune regulation after spinal cord injury in rats and their significance in spinal cord repair.SEVs or HSEVs were isolated from bone marrow MSC supernatants by density gradient ultracentrifugation.HSEV administration to rats via tail vein injection after spinal cord injury reduced the lesion area and attenuated spinal cord inflammation.HSEVs regulate macrophage polarization towards the M2 phenotype in vivo and in vitro.Micro RNA sequencing and bioinformatics analyses of SEVs and HSEVs revealed that mi R-146a-5p is a potent mediator of macrophage polarization that targets interleukin-1 receptor-associated kinase 1.Reducing mi R-146a-5p expression in HSEVs partially attenuated macrophage polarization.Our data suggest that HSEVs attenuate spinal cord inflammation and injury in rats by transporting mi R-146a-5p,which alters macrophage polarization.This study provides new insights into the application of HSEVs as a therapeutic tool for spinal cord injury.
文摘BACKGROUND MicroRNAs(miRNAs)regulate gene expression and play a critical role in cancer physiology.However,there is still a limited understanding of the function and regulatory mechanism of miRNAs in gastric cancer(GC).AIM To investigate the role and molecular mechanism of miRNA-145-5p(miR145-5p)in the progression of GC.METHODS Real-time polymerase chain reaction(RT-PCR)was used to detect miRNA expression in human GC tissues and cells.The ability of cancer cells to migrate and invade was assessed using wound-healing and transwell assays,respectively.Cell proliferation was measured using cell counting kit-8 and colony formation assays,and apoptosis was evaluated using flow cytometry.Expression of the epithelial-mesenchymal transition(EMT)-associated protein was determined by Western blot.Targets of miR-145-5p were predicated using bioinformatics analysis and verified using a dual-luciferase reporter system.Serpin family E member 1(SERPINE1)expression in GC tissues and cells was evaluated using RT-PCR and immunohistochemical staining.The correlation between SERPINE1 expression and overall patient survival was determined using Kaplan-Meier plot analysis.The association between SERPINE1 and GC progression was also tested.A rescue experiment of SERPINE1 overexpression was conducted to verify the relationship between this protein and miR-145-5p.The mechanism by which miR-145-5p influences GC progression was further explored by assessing tumor formation in nude mice.RESULTS GC tissues and cells had reduced miR-145-5p expression and SERPINE1 was identified as a direct target of this miRNA.Overexpression of miR-145-5p was associated with decreased GC cell proliferation,invasion,migration,and EMT,and these effects were reversed by forcing SERPINE1 expression.Kaplan-Meier plot analysis revealed that patients with higher SERPINE1 expression had a shorter survival rate than those with lower SERPINE1 expression.Nude mouse tumorigenesis experiments confirmed that miR-145-5p targets SERPINE1 to regulate extracellular signal-regulated kinase-1/2(ERK1/2).CONCLUSION This study found that miR-145-5p inhibits tumor progression and is expressed in lower amounts in patients with GC.MiR-145-5p was found to affect GC cell proliferation,migration,and invasion by negatively regulating SERPINE1 levels and controlling the ERK1/2 pathway.
基金supported by the National Natural Science Foundation of China(No.82370838 and No.82172221).
文摘Extracellular vesicles(EVs)are considered to be a new generation of bioinspired nanoscale drug delivery systems due to their low immunogenicity,natural functionality,and excellent biocompatibility.However,limitations such as low uptake efficiency,insufficient production,and inhomogeneous performance undermine their potential.To address these issues,numerous researchers have put forward various methods and applications for enhancing EV uptake in recent decades.In this review,we introduce various methods for the cellular uptake of EVs and summarize recent advances on the methods and mechanisms for enhancing EV uptake.In addition,we provide further understanding regarding enhancing EV uptake and put forward prospects and challenges for the development of EV-based therapy in the future.